精英家教网 > 高中数学 > 题目详情
16.设a,b,c∈R+,且a+b+c=3,证明:$\frac{{a}^{4}}{{b}^{2}+c}$+$\frac{{b}^{4}}{{c}^{2}+a}$+$\frac{{c}^{4}}{{a}^{2}+b}$≥$\frac{3}{2}$.

分析 利用基本不等式,即可证明结论.

解答 证明:∵$\frac{{a}^{4}}{{b}^{2}+c}$+b2+c≥2a2,$\frac{{b}^{4}}{{c}^{2}+a}$+c2+a≥2b2,$\frac{{c}^{4}}{{a}^{2}+b}$+a2+b≥2c2
相加,移项可得$\frac{{a}^{4}}{{b}^{2}+c}$+$\frac{{b}^{4}}{{c}^{2}+a}$+$\frac{{c}^{4}}{{a}^{2}+b}$≥(a2+b2+c2)-(a+b+c),
∵a+b+c=3,a2+b2+c2≥$\frac{1}{2}$(a+b+c)2
∴$\frac{{a}^{4}}{{b}^{2}+c}$+$\frac{{b}^{4}}{{c}^{2}+a}$+$\frac{{c}^{4}}{{a}^{2}+b}$≥$\frac{3}{2}$(a=b=c时取等号).

点评 本题考查不等式的证明,考查基本不等式的运用,正确运用基本不等式是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.已知直线Ax+By+C=0不经过第三象限,则A,B,C应满足   (  )
A.AB>0,BC>0B.AB>0,BC<0C.AB<0,BC>0D.AB<0,BC<0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知$\overrightarrow{m}$=(sinωx,cosωx),$\overrightarrow{n}$=(cosωx,cosωx)其中ω>0,若函数f(x)=$\overrightarrow{m}$•$\overrightarrow{n}$-$\frac{1}{2}$的图象上相邻两对称轴间得距离为2π
(1)求方程f(x)-$\frac{\sqrt{6}}{4}$=0在区间[0,17]内的解;
(2)若$\overrightarrow{m}$•$\overrightarrow{n}$=$\frac{1}{2}$+$\frac{\sqrt{2}}{4}$,求sinx;
(3)在△ABC中,a,b,c分别是角A,B,C的对边,且满足(2a-c)cosB=bcosC,求函数f(A)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.若正数x,y满足x+3y=5xy,求:
(1)3x+4y的最小值;
(2)求xy的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.以点(2,-2)为圆心并且与圆x2+y2+2x-4y+1=0相外切的圆的方程是(  )
A.(x+2)2+(y+2)2=9B.(x-2)2+(y+2)2=9C.(x-2)2+(y-2)2=16D.(x-2)2+(y+2)2=16

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知u、v∈R,关于x的方程x2+(u+vi)x+1+ui=0至少有一个实数根,求u的最小正值,并求出此时v的值及方程的根.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.直线y=a分别与直线y=3x+3,曲线y=2x+lnx交于A,B两点,则|AB|的最小值为$\frac{4}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.一个五位数abcde满足a<b,b>c>d,d<e且a>d,b>e(如37201,45412),则称这个五位数符合“正弦规律”.那么五个数字互不相同的五位数共有1512个.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.己知α是第三象限的角,且tanα=6,求sinα-cosα的值.

查看答案和解析>>

同步练习册答案