精英家教网 > 高中数学 > 题目详情

满足条件的三角形的面积的最大值为        .

 

【答案】

【解析】解:设BC=x,则AC=  x,

根据面积公式得S△ABC=1 /2 AB•BCsinB

=1/ 2 ×2x  ,

根据余弦定理得cosB=(AB2+BC2-AC2)/2AB•BC=[4+x2-( x)2] /4x =(4-x2) /4x ,

代入上式得

S△ABC=x 

由三角形三边关系有 x+x>2

x+2> x   ,

解得2  -2<x<2 +2.

故当x=2 时,S△ABC取得最大值2

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,四棱锥S-ABCD中,SA⊥平面ABCD,底面ABCD为直角梯形,AD∥BC,∠BAD=90°,且BC=2AD=2,AB=4,SA=3.
(1)求证:平面SBC⊥平面SAB;
(2)若E、F分别为线段BC、SB上的一点(端点除外),满足
BF
BS
=
BE
BC
=λ.(0<λ<1)
①求证:对于任意的λ∈(0,1),恒有SC∥平面AEF;
②是否存在λ,使得△AEF为直角三角形,若存在,求出所有符合条件的λ值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

一块边长为10的正方形纸片,按如图所示将阴影部分裁下,然后将余下的四个全等的等腰三角形作为侧面制作一个正四棱锥S-ABCD(底面是正方形,顶点在底面的射影是底面中心的四棱锥).
(1)过此棱锥的高以及一底边中点F作棱锥的截面(如图),设截面三角形面积为y,求y的最大值及y取最大值时的x的值;
(2)空间一动点P满足
SP
=a
SA
+b
SB
+c
SC
(a+b+c=1),在第(1)问的条件下,求|
SP
|
的最小值,并求取得最小值时a,b,c的值;
(3)在第(1)问的条件下,设F是CD的中点,问是否存在这样的动点Q,它在此棱锥的表面(包含底面ABCD)运动,且FQ⊥AC?如果存在,计算其运动轨迹的长度,如果不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:2015届福建省高一上学期期末考试数学试卷(解析版) 题型:解答题

(本小题满分14分)

如图,四棱锥S-ABCD中,SA⊥平面ABCD,底面ABCD为直角梯形,AD∥BC,∠BAD=90 ,且BC=2AD=2,AB=4,SA=3.

(1)求证:平面SBC⊥平面SAB;

(2)若E、F分别为线段BC、SB上的一点(端点除外),满足.(

①求证:对于任意的,恒有SC∥平面AEF;

②是否存在,使得△AEF为直角三角形,若存在,求出所有符合条件的值;若不存在,说明理由.

 

查看答案和解析>>

科目:高中数学 来源:2012-2013学年四川省成都市树德中学高二(上)期中数学试卷(理科)(解析版) 题型:解答题

一块边长为10的正方形纸片,按如图所示将阴影部分裁下,然后将余下的四个全等的等腰三角形作为侧面制作一个正四棱锥S-ABCD(底面是正方形,顶点在底面的射影是底面中心的四棱锥).
(1)过此棱锥的高以及一底边中点F作棱锥的截面(如图),设截面三角形面积为y,求y的最大值及y取最大值时的x的值;
(2)空间一动点P满足(a+b+c=1),在第(1)问的条件下,求的最小值,并求取得最小值时a,b,c的值;
(3)在第(1)问的条件下,设F是CD的中点,问是否存在这样的动点Q,它在此棱锥的表面(包含底面ABCD)运动,且FQ⊥AC?如果存在,计算其运动轨迹的长度,如果不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年福建省福州市文博中学高一(上)期末数学试卷(解析版) 题型:解答题

如图,四棱锥S-ABCD中,SA⊥平面ABCD,底面ABCD为直角梯形,AD∥BC,∠BAD=90°,且BC=2AD=2,AB=4,SA=3.
(1)求证:平面SBC⊥平面SAB;
(2)若E、F分别为线段BC、SB上的一点(端点除外),满足==λ.(0<λ<1)
①求证:对于任意的λ∈(0,1),恒有SC∥平面AEF;
②是否存在λ,使得△AEF为直角三角形,若存在,求出所有符合条件的λ值;若不存在,说明理由.

查看答案和解析>>

同步练习册答案