精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆过点,其上顶点到直线的距离为2,过点的直线轴的交点分别为,且.

1)证明:为定值;

2)如上图所示,若关于原点对称,关于原点对称,且,求四边形面积的最大值.

【答案】1)证明见解析;(2.

【解析】

1)其上顶点到直线的距离为2,求出,点代入椭圆方程,可求出椭圆方程,设经过点的直线方程为:,可得.利用,可得,利用两点之间的距离公式可得

2)由(1)得直线的方程为,与椭圆方程联立求出,由点到直线距离公式,求出到直线距离,求出四边形面积的关于的表达式,结合关系,由基本不等式求出最大值.

1)其上顶点到直线的距离为2

,解得.

又椭圆过点

,解得.

∴椭圆的标准方程为:.

在椭圆上,.

设经过点的直线方程为:

可得.

.

为定值.

2)由(1)得直线斜率为

方程为

联立解得

到直线的距离为

当且仅当,即时,等号成立,

四边形面积的最大值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】2022年北京冬奥会的申办成功与“3亿人上冰雪”口号的提出,将冰雪这个冷项目迅速炒“热”.北京某综合大学计划在一年级开设冰球课程,为了解学生对冰球运动的兴趣,随机从该校一年级学生中抽取了100人进行调查,其中女生中对冰球运动有兴趣的占,而男生有10人表示对冰球运动没有兴趣额.

(1)完成列联表,并回答能否有的把握认为“对冰球是否有兴趣与性别有关”?

有兴趣

没兴趣

合计

55

合计

(2)已知在被调查的女生中有5名数学系的学生,其中3名对冰球有兴趣,现在从这5名学生中随机抽取3人,求至少有2人对冰球有兴趣的概率.

附表:

0.150

0.100

0.050

0.025

0.010

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左顶点为,右焦点为,斜率为1的直线与椭圆交于两点,且,其中为坐标原点.

1)求椭圆的标准方程;

2)设过点且与直线平行的直线与椭圆交于两点,若点满足,且与椭圆的另一个交点为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,已知曲线的参数方程为为参数),以坐标原点为极点,轴的正半轴为极轴,建立极坐标系,直线的极坐标方程为.

1)求曲线的普通方程和直线的直角坐标方程;

2)若射线的极坐标方程为.相交于点相交于点,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若存在极小值,求实数的取值范围;

(2)设的极小值点,且,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳖臑.

如图,在阳马中,侧棱底面,且 中点,点上,且平面,连接

(Ⅰ)证明: 平面

(Ⅱ)试判断四面体是否为鳖臑,若是,写出其每个面的直角(只需写出结论);若不是,说明理由;

(Ⅲ)已知 ,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】波罗尼斯(古希腊数学家,的公元前262-190年)的著作《圆锥曲线论》是古代世界光辉的科学成果,它将圆锥曲线的性质网罗殆尽,几乎使后人没有插足的余地.他证明过这样一个命题:平面内与两定点距离的比为常数kk0,且k≠1)的点的轨迹是圆,后人将这个圆称为阿波罗尼斯圆.现有椭圆=1ab0),AB为椭圆的长轴端点,CD为椭圆的短轴端点,动点M满足=2,△MAB面积的最大值为8,△MCD面积的最小值为1,则椭圆的离心率为(  )

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,正三棱柱各条棱的长度均相等,的中点,分别是线段和线段的动点(含端点),且满足,当运动时,下列结论中不正确的是

A. 内总存在与平面平行的线段

B. 平面平面

C. 三棱锥的体积为定值

D. 可能为直角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1,在边长为4的正方形中,的中点,的中点,现将三角形沿翻折成如图2所示的五棱锥.

(1)求证:平面

(2)若平面平面,求直线与平面所成角的正弦值.

查看答案和解析>>

同步练习册答案