精英家教网 > 高中数学 > 题目详情
已知复数z=(a2-7a+12)+(a2-5a+6)i(a∈R),那么当a为何值时,z是实数?当a为何值时,z是虚数?当a为何值时,z是纯虚数?
考点:复数的代数表示法及其几何意义
专题:数系的扩充和复数
分析:①由复数z的虚部等于0求解a的值;
②由复数z的虚部不等于0求解a的值;
③复数z的实部等于0且虚部不等于0联立求解m的值.
解答: 解:①当a2-5a+6=0,即m=2或a=3时,z是实数;
②当a2-5a+6≠0,即a≠2且a≠3时,z是虚数;
③当a2-7a+12=0,且a2-5a+6≠0,即a=4时,z是纯虚数.
点评:本题考查了复数的基本概念,考查了复数是实数、虚数和纯虚数的条件,是基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

cos(-
π
6
)的值是(  )
A、
3
2
B、-
3
2
C、
1
2
D、-
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

若数据x1,x2,…,xn的方差是1,则若数据2x1-3,2x2-3,…,2xn-3的方差是(  )
A、-1B、1C、2D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

某企业生产一种汽车配件,经抽样统计,该企业生产的配件尺寸的样本频率分布直方图如下.配件尺寸在[60,62)内的为一等品,尺寸在[58,60)或[62,64)内的为二等品,其余为三等品.用频率近似表示概率.
(Ⅰ)试估算该企业生产的配件的平均尺寸;
(Ⅱ)若该企业每生产1个配件的获利情况是:一等品50元,二等品20元,三等品5元.设该企业生产1个这种配件能获利X元,求X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

在等差数列{an}中,已知a1+a6=12,a4=7.
(1)求a9
(2)求此数列在101与1000之间共有多少项?

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=3sin(ωx+
π
6
),ω>0,x∈(-∞,+∞),且f(x)以
π
2
为最小正周期.
(1)求f(x)的解析式;
(2)已知f(
α
4
+
π
12
)=
9
5
,求sinα的值.
(3)求f(x)的单调增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)求值:cosπ+3sin
π
2
-4cos(-
π
3
);
(2)若tanθ=2,求
sinθ+2cosθ
2sinθ-cosθ
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,AP是圆O的切线,A是切点,AD⊥OP与D点,过点P作圆O的割线与圆O相交于B,C两点
(Ⅰ)证明:O,D,B,C四点共圆.
(Ⅱ)设∠OPC=30°,∠ODC=40°,求∠DBC的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

当实数m为何值时,z=lg(m2-2m-2)+(m2+3m+2)i
(Ⅰ)(1)为纯虚数;(2)为实数;
(Ⅱ)对应点在复平面第二象限.

查看答案和解析>>

同步练习册答案