精英家教网 > 高中数学 > 题目详情

已知函数f(x)=数学公式(m∈z)为偶函数,且以f(2011)<f(2012).
(1)求m的值,并确定f(x)的解析式;
(2)若g(x)=loga[f(x)-ax](a>0,a≠1)在区间[2,3]上为增函数,求实数a的取值范围.

解:(1)由题意得:-2m2+m+3是偶数且-2m2+m+3<0,
∴-1<m<,且m∈Z,∴m=0或1,
当m=0时,-2m2+m+3=3为奇数,不合,当m=1时,-2m2+m+3=2为偶数,
∴m的值为1,f(x)=x2
(2)g(x)=loga[f(x)-ax]=loga(x2-ax),设t=x2-ax,
当a>1时,由于g(x)=logat是增函数,故只须函数t=x2-ax在[2,3]是增函数,且函数t大于0,
,解得1<a<2.
当 1>a>0时,由题意可得 函数t=x2-ax在[2,3]应是减函数,且函数t大于0,
,此时无解
综上,实数a的取值范围是(1,2).
分析:(1)因为幂函数是一个偶函数,且f(2011)<f(2012)得-2m2+m+3是偶数且-2m2+m+3<0,求出m的解集,找出整数解即可.
(2)分类讨论,考查内外函数的单调性,利用f(x)=loga(x2-ax)(a>0,且a≠1)在区间[2,3]上是增函数,即可求实数a的取值范围.
点评:本题考查幂函数的概念、解析式、定义域、值域,对数函数的单调性,考查复合函数的单调区间,体现了数形结合的数学思想.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=sinxcosφ+cosxsinφ(其中x∈R,0<φ<π).
(1)求函数f(x)的最小正周期;
(2)若函数y=f(2x+
π
4
)
的图象关于直线x=
π
6
对称,求φ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)为定义在R上的奇函数,且当x>0时,f(x)=(sinx+cosx)2+2cos2x,
(1)求x<0,时f(x)的表达式;
(2)若关于x的方程f(x)-a=o有解,求实数a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=aInx-ax,(a∈R)
(1)求f(x)的单调递增区间;(文科可参考公式:(Inx)=
1
x

(2)若f′(2)=1,记函数g(x)=x3+x2[f(x)+
m
2
]
,若g(x)在区间(1,3)上总不单调,求实数m的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-bx的图象在点A(1,f(1))处的切线l与直线3x-y+2=0平行,若数列{
1
f(n)
}
的前n项和为Sn,则S2010的值为(  )
A、
2011
2012
B、
2010
2011
C、
2009
2010
D、
2008
2009

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是定义在区间(-1,1)上的奇函数,且对于x∈(-1,1)恒有f’(x)<0成立,若f(-2a2+2)+f(a2+2a+1)<0,则实数a的取值范围是
 

查看答案和解析>>

同步练习册答案