1£®Èçͼ£¬ÒÔ×ø±êÔ­µãOΪԲÐĵĵ¥Î»Ô²ÓëxÖáÕý°ëÖáÏཻÓÚµãA£¬µãB£¬PÔÚµ¥Î»Ô²ÉÏ£¬ÇÒB£¨-$\frac{{\sqrt{5}}}{5}$£¬$\frac{{2\sqrt{5}}}{5}$£©£¬¡ÏAOB=¦Á£®
£¨1£©Çó$\frac{4cos¦Á-3sin¦Á}{5cos¦Á+3sin¦Á}$µÄÖµ£»
£¨2£©ÈôËıßÐÎOAQPÊÇÆ½ÐÐËıßÐΣ¬
£¨i£©µ±PÔÚµ¥Î»Ô²ÉÏÔ˶¯Ê±£¬ÇóµãOµÄ¹ì¼£·½³Ì£»
£¨ii£©Éè¡ÏPOA=¦È£¨0¡Ü¦È¡Ü2¦Ð£©£¬µãQ£¨m£¬n£©£¬ÇÒf£¨¦È£©=m+$\sqrt{3}$n£®Çó¹ØÓڦȵĺ¯Êýf£¨¦È£©µÄ½âÎöʽ£¬²¢ÇóÆäµ¥µ÷ÔöÇø¼ä£®

·ÖÎö £¨1£©ÓÉÈý½Çº¯Êý¶¨ÒåµÃtan¦Á=-2£¬ÔÙÏÒ»¯ÇдúÈë¼ÆË㣬¼´¿ÉÇóÇó$\frac{4cos¦Á-3sin¦Á}{5cos¦Á+3sin¦Á}$µÄÖµ£»
£¨2£©£¨i£©ÉèPAÖеãΪH£¬P£¨x1£¬y1£©£¬Q£¨x£¬y£©£¬Ôò$x_1^2+y_1^2=1$£¬$H£¨\frac{{x_1^{\;}+1}}{2}£¬\frac{{y_1^{\;}}}{2}£©$£¬ÓÉ´Ë¿ÉÇóµãOµÄ¹ì¼£·½³Ì£»
£¨ii£©È·¶¨$f£¨¦È£©=cos¦È+\sqrt{3}sin¦È+1=2sin£¨¦È+\frac{¦Ð}{6}£©+1$£¬¼´¿ÉÇóÆäµ¥µ÷ÔöÇø¼ä£®

½â´ð ½â£º£¨1£©ÓÉÈý½Çº¯Êý¶¨ÒåµÃtan¦Á=-2£¬ËùÒÔԭʽ=$\frac{4-3tan¦Á}{5+3tan¦Á}=\frac{10}{-1}=-10$£®
£¨2£©¡ßËıßÐÎOAQPÊÇÆ½ÐÐËıßÐΣ¬¡àPAÓëOQ»¥ÏàÆ½·Ö£¬
£¨i£©ÉèPAÖеãΪH£¬P£¨x1£¬y1£©£¬Q£¨x£¬y£©£¬Ôò$x_1^2+y_1^2=1$£¬$H£¨\frac{{x_1^{\;}+1}}{2}£¬\frac{{y_1^{\;}}}{2}£©$£¬
ÓÖ$H£¨\frac{x}{2}£¬\frac{y}{2}£©$£¬ËùÒÔ$\left\{\begin{array}{l}{x_1}=x-1\\{y_1}=y\end{array}\right.$£¬´úÈëÉÏʽµÃµãQµÄ¹ì¼£·½³ÌΪ£¨x-1£©2+y2=1£®
£¨ii£©ÒÀÌâÒâµÃ$\left\{\begin{array}{l}{x_1}=cos¦È\\{y_1}=sin¦È\end{array}\right.$£¬
ÓÖÓÉ£¨i£©Öª$\left\{\begin{array}{l}{x_1}=m-1\\{y_1}=n\end{array}\right.$£¬¡à$\left\{\begin{array}{l}m=cos¦È+1\\ n=sin¦È\end{array}\right.$£¬
¡à$f£¨¦È£©=cos¦È+\sqrt{3}sin¦È+1=2sin£¨¦È+\frac{¦Ð}{6}£©+1$
¡ß$\left\{\begin{array}{l}2k¦Ð-\frac{¦Ð}{2}¡Ü¦È+\frac{¦Ð}{6}¡Ü2k¦Ð+\frac{¦Ð}{2}£¬k¡ÊZ\\ 0¡Ü¦È¡Ü2¦Ð\end{array}\right.$£¬
¡à$0¡Ü¦È¡Ü\frac{¦Ð}{3}$»ò$\frac{4¦Ð}{3}¡Ü¦È¡Ü2¦Ð$£¬
¡àf£¨¦È£©µÄÔöÇø¼äΪ$[0£¬\frac{¦Ð}{3}]$ºÍ$[\frac{4¦Ð}{3}£¬2¦Ð]$£®

µãÆÀ ±¾Ì⿼²éͬ½ÇÈý½Çº¯Êý¹ØÏµµÄÓ¦Ó㬿¼²é¹ì¼£·½³Ì£¬¿¼²éÈý½Çº¯Êý֪ʶ£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

11£®ÒÑÖªº¯Êýy=f£¨x£©£¨x¡ÊR£©Âú×ãf£¨-x£©=-f£¨x£©£¬Æäµ¼º¯ÊýΪy=f¡ä£¨x£©£¬µ±x£¾0ʱ£¬xf¡ä£¨x£©£¼f£¨x£©£¬Èô$a=2f£¨\frac{1}{2}£©£¬b=-\frac{1}{2}f£¨-2£©£¬c=-\frac{1}{ln2}f£¨ln\frac{1}{2}£©$£¬Ôòa£¬b£¬cµÄ´óС¹ØÏµÎª£¨¡¡¡¡£©
A£®a£¼b£¼cB£®b£¼c£¼aC£®b£¼a£¼cD£®c£¼a£¼b

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®Èô½Ç¦ÁµÄÖÕ±ßÂäÔÚÖ±Ïßx+y=0ÉÏ£¬Ôò$\frac{{|{tan¦Á}|}}{tan¦Á}+\frac{sin¦Á}{{\sqrt{1-{{cos}^2}¦Á}}}$µÄÖµµÈÓÚ£¨¡¡¡¡£©
A£®2»ò-2B£®-2»ò0C£®2D£®0»ò2

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®£¨ÎĿƣ©¶¨Ò壺Èô¸÷ÏîΪÕýʵÊýµÄÊýÁÐ{an}Âú×ã${a_{n+1}}=\sqrt{a_n}£¨n¡Ê{N^*}£©$£¬Ôò³ÆÊýÁÐ{an}Ϊ¡°ËãÊõƽ·½¸ùµÝÍÆÊýÁС±£®
ÒÑÖªÊýÁÐ{xn}Âú×ã${x_n}£¾0£¬n¡Ê{N^*}$£¬ÇÒ${x_1}=\frac{9}{2}$£¬µã£¨xn+1£¬xn£©ÔÚ¶þ´Îº¯Êýf£¨x£©=2x2+2xµÄͼÏóÉÏ£®
£¨1£©ÊÔÅжÏÊýÁÐ{2xn+1}£¨n¡ÊN*£©ÊÇ·ñΪËãÊõƽ·½¸ùµÝÍÆÊýÁУ¿ÈôÊÇ£¬Çë˵Ã÷ÄãµÄÀíÓÉ£»
£¨2£©¼Çyn=lg£¨2xn+1£©£¨n¡ÊN*£©£¬ÇóÖ¤£ºÊýÁÐ{yn}ÊǵȱÈÊýÁУ¬²¢Çó³öͨÏʽyn£»
£¨3£©´ÓÊýÁÐ{yn}ÖÐÒÀ¾ÝijÖÖ˳Ðò×Ô×óÖÁÓÒÈ¡³öÆäÖеÄÏî${y_{n_1}}£¬{y_{n_2}}£¬{y_{n_3}}£¬¡­$£¬°ÑÕâЩÏîÖØÐÂ×é³ÉÒ»¸öÐÂÊýÁÐ{zn}£º${z_1}={y_{n_1}}£¬{z_2}={y_{n_2}}£¬{z_3}={y_{n_3}}£¬¡­$£®
 ÈôÊýÁÐ{zn}ÊÇÊ×ÏîΪ${z_1}={£¨\frac{1}{2}£©^{m-1}}$£¬¹«±ÈΪ$q=\frac{1}{2^k}£¨m£¬k¡Ê{N^*}£©$µÄÎÞÇîµÈ±ÈÊýÁУ¬ÇÒÊýÁÐ{zn}¸÷ÏîµÄºÍΪ$\frac{1}{3}$£¬ÇóÕýÕûÊýk¡¢mµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

16£®½«5ÃûÄÐÉú£¬2ÃûÅ®ÉúÅųÉÒ»ÅÅ£¬ÒªÇóÄÐÉú¼×±ØÐëÕ¾ÔÚÖм䣬2ÃûÅ®Éú±ØÐëÏàÁÚµÄÅÅ·¨ÖÖÊýÓУ¨¡¡¡¡£©
A£®192ÖÖB£®216ÖÖC£®240ÖÖD£®360ÖÖ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

6£®ÅжÏÏÂÁÐÃüÌâÕýÈ·µÄÊÇ¢Ú¢Û¢Ü
¢ÙÈô$\overrightarrow a$•$\overrightarrow c$=$\overrightarrow b$•$\overrightarrow c$£¨$\overrightarrow c$¡Ù$\overrightarrow 0$£©£¬Ôò$\overrightarrow a$=$\overrightarrow b$£»
¢ÚÒÑÖªÏòÁ¿$\overrightarrow a$=£¨2£¬3£©£¬$\overrightarrow b$=£¨3£¬-4£©£¬Ôò$\overrightarrow a$ÔÚ$\overrightarrow b$ÉϵÄͶӰΪ-$\frac{6}{5}$£»
¢ÛÊýÁÐ{an}£¬{bn}¾ùΪµÈ²îÊýÁУ¬Ç°nÏîºÍ·Ö±ðΪSn£¬Tn£®Èô$\frac{S_n}{T_n}$=$\frac{3n-2}{5n+1}$£¬Ôò$\frac{a_5}{b_5}$=$\frac{25}{46}$£»
¢Ü|$\overrightarrow{AB}$|$\overrightarrow{PC}$+|$\overrightarrow{BC}$|$\overrightarrow{PA}$+|$\overrightarrow{CA}$|$\overrightarrow{PB}$=$\overrightarrow 0$⇒PΪ¡÷ABCµÄÄÚÐÄ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®ÒÑÖªº¯Êýf£¨x£©=ax2-2x+2+lnx£¨a£¾0£©
£¨1£©Èôf£¨x£©ÔÚÆä¶¨ÒåÓòÉÏÊǵ¥µ÷Ôöº¯Êý£¬ÇóʵÊýaµÄȡֵ¼¯ºÏ£»
£¨2£©µ±a=$\frac{3}{8}$ʱ£¬º¯Êýy=f£¨x£©ÔÚ[en£¬+¡Þ]£¨n¡ÊZ£©ÓÐÁãµã£¬ÇónµÄ×î´óÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®ÔÚÈý½ÇÐÎABCÖУ¬a£¬b£¬c·Ö±ðÊǽÇA£¬B£¬CµÄ¶Ô±ß£¬Èôb2=ac£¬ÇÒa2+bc=ac+c2£®
£¨¢ñ£©Çó½ÇAµÄ´óС£®
£¨¢ò£©Çó$\frac{bsinB}{c}$µÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®ÒÑÖªµÈ²îÊýÁÐ{an}µÄ¹«²îd=2£¬Ç°nÏîµÄºÍΪSn£®µÈ±ÈÊýÁÐ{bn}Âú×ãb1=a1£¬b2=a4£¬b3=a13£®
£¨I£©Çó{an}£¬{bn}¼°ÊýÁÐ{bn}µÄǰnÏîºÍBn£»
£¨II£©¼ÇÊýÁÐ{$\frac{1}{{S}_{n}}$}µÄǰnÏîºÍΪTn£¬ÇóTn£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸