精英家教网 > 高中数学 > 题目详情
已知f(x)的定义域为R,且当x,y∈R时,恒有f(x+y)=f(x)+f(y).
(1)求f(0)的值.
(2)证明:f(x)是奇函数.
(3)如果x>0时,f(x)<0,且f(1)=-
12
,试求使f(x2-2ax-1)≤1对x∈[2,4]恒成立的实数a的取值范围.
分析:(1)利用对任意实数x,y有f(x+y)=f(x)+f(y).令x=y=0即可得到:f(0).
(2)由于f(x)的定义域为R,可知f(x)的定义域关于原点对称.又令y=-x,即可得到是奇函数.
(3)设x1,x2∈R,x1<x2,则x2-x1>0,可得f(x2-x1)<0,f(x2)+f(-x1)=f(x2)-f(x1)<0,得到f(x)在R上的单调性.利用f(1)=-
1
2
,可得f(-1)=
1
2
,进而得到f(-2)=1,于是不等式f(x2-2ax-1)≤1即f(x2-2ax-1)≤f(-2),可得x2-2ax-1≥-2即x2-2ax+1≥0对x∈[2,4]恒成立.即a≤
x
2
+
1
2x
对x∈[2,4]恒成立.利用导数即可得出.
解答:解:(1)∵对任意实数x,y有f(x+y)=f(x)+f(y).
∴令x=y=0得:f(0)=2f(0),得f(0)=0.
(2)∵f(x)的定义域为R,∴f(x)的定义域关于原点对称.
又令y=-x,则f(0)=f(x)+f(-x)=0,
∴f(-x)=-f(x)是奇函数.
(3)设x1,x2∈R,x1<x2,则x2-x1>0,
∴f(x2-x1)<0,∴f(x2)+f(-x1)=f(x2)-f(x1)<0,
∴f(x)是R上的减函数.
∵f(1)=-
1
2
,∴f(-1)=
1
2

∴f(-2)=2f(-1)=1,
∴不等式f(x2-2ax-1)≤1即是f(x2-2ax-1)≤f(-2),
∴x2-2ax-1≥-2即x2-2ax+1≥0对x∈[2,4]恒成立.
a≤
x
2
+
1
2x
对x∈[2,4]恒成立.
g(x)=
x
2
+
1
2x

g(x)=
1
2
-
1
2x2
=
x2-1
2x2
>0
在x∈[2,4]上恒成立,
因此g(x)在x∈[2,4]上单调递增,
g(x)min=g(2)=1+
1
4
=
5
4

a≤
5
4
点评:正确理解抽象函数的意义、奇函数的判断方法、问题的等价转化、利用导数研究函数的单调性、极值与最值等是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)的定义域为[-1,2),则f(|x|)的定义域为(  )
A、[-1,2)B、[-1,1]C、(-2,2)D、[-2,2)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)的定义域是[0,1],且f(x+m)+f(x-m)的定义域是∅,则正数m的取值范围是
m>
1
2
m>
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)的定义域为{x∈R|x≠0},且f(x)是奇函数,当x>0时f(x)=-x2+bx+c,若f(1)=f(3),f(2)=2.
(1)求b,c的值;及f(x)在x>0时的表达式;
(2)求f(x)在x<0时的表达式;
(3)若关于x的方程f(x)=ax(a∈R)有解,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)的定义域为R+,且f(x+y)=f(x)+f(y)对一切正实数x,y都成立,若f(8)=4,则f(2)=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)的定义域为[0,1],求函数y=f(x+a)+f(x-a)(0<a<
12
)的定义域.

查看答案和解析>>

同步练习册答案