如图所示,在斜边为AB的Rt△ABC中,过A作PA⊥平面ABC,AM⊥PB于M,
AN⊥PC于N.
(1)求证:BC⊥面PAC;
(2)求证:PB⊥面AMN.
(3)若PA=AB=4,设∠BPC=θ,试用tanθ表示△AMN的面积,当tanθ取何值时,△AMN的面积最大?最大面积是多少?
(1)证明:∵PA⊥平面ABC,BC平面ABC.
∴PA⊥BC,又AB为斜边,∴BC⊥AC,PA∩AC=A,∴BC⊥平面PAC.
(2)证明:∵BC⊥平面PAC,AN平面PAC ∴BC⊥AN,又AN⊥PC,且BC∩PC=C,
∴AN⊥面PBC,又PB平面PBC.∴AN⊥PB,
又∵PB⊥AM,AM∩AN=A ,∴PB⊥平面AMN.
(3)解:在Rt△PAB中,PA=AB=4,∴PB=4,
∵PM⊥AB,∴AM=PB=2,∴PM=BM=2
又∵PB⊥面AMN,MN平面AMN.∴PB⊥MN,
∵MN=PM·tanθ=2tanθ,∵AN⊥平面PBC,MN平面PBC.∴AN⊥MN
∵AN=
∴当tan2θ=,即tanθ=时,S△AMN有最大值为2,
∴当tanθ=时,S△AMN面积最大,最大值为2.
【解析】略
科目:高中数学 来源: 题型:
查看答案和解析>>
科目:高中数学 来源: 题型:
查看答案和解析>>
科目:高中数学 来源:不详 题型:解答题
查看答案和解析>>
科目:高中数学 来源:2010-2011学年浙江省温州市龙湾中学高二(上)期末数学试卷(文科)(解析版) 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com