精英家教网 > 高中数学 > 题目详情
8.已知全集U=R,集合A={x|y=$\frac{1}{\sqrt{lo{g}_{\frac{1}{2}}(2x+1)}}$},B={x|($\frac{1}{2}$)x≤1},则∁U(A∪B)=(  )
A.(-∞,0)B.(0,+∞)C.(-∞,-$\frac{1}{2}$]D.(-∞,$\frac{1}{2}$)

分析 根据对数函数、指数函数的单调性可以解出A=$(-\frac{1}{2},0)$,B=[0,+∞),然后进行并集、补集的运算即可.

解答 解:解$lo{g}_{\frac{1}{2}}(2x+1)>0$得,$-\frac{1}{2}<x<0$;
解$(\frac{1}{2})^{x}≤1$得,x≥0;
∴$A=(-\frac{1}{2},0),B=[0,+∞)$;
∴$A∪B=(-\frac{1}{2},+∞)$;
∴${∁}_{U}(A∪B)=(-∞,-\frac{1}{2}]$.
故选:C.

点评 考查对数函数、指数函数的单调性,以及对数函数、指数函数的定义域,并集与补集的运算.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.袋中装有5只乒乓球,其中3只是白球,2只是黄球,先后从袋中无放回地取出两球,则取到1次白球1次黄球的概率是$\frac{3}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.在平面直角坐标系xOy中,圆C1:(x+1)2+(y-6)2=25,圆C2:(x-17)2+(y-30)2=r2,若圆C2上存在一点P,使得过点P可作一条射线与圆C1一次交于点A,B,满足|PA|=2|AB|,则半径r的取值范围是(  )
A.[5,55]B.[5,50]C.[10,50]D.[10,55]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知定义在R上的函数f(x)=$\frac{-{2}^{x}+a}{{2}^{x+1}+2}$(a为实常数)是奇函数g(x)=2(x-x2).
(Ⅰ)求a的值,判断并证明函数f(x)的单调性;
(Ⅱ)若对任意的t∈[-1,4],不等式f(g(t)-1)+f(8t+m)<0(m为实常数)都成立,求m的取值范围.
(Ⅲ)记F1(x)=f(x)+x2-$\frac{1}{{2}^{x}+1}$+$\frac{1}{2}$,F2(x)=g(x),F3(x)=$\frac{1}{3}$|sin2πx|,b1=$\frac{i}{100}$,i=0,1,2,…,100,若Mk=|Fk(b1)-Fk(b0)|+|Fk(b2)-Fk(b1)|+…+|Fk(b100)-Fk(b99)|,k=1,2,3,试比较M1,M2,M3的大小,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.若三棱锥P-ABC的最长的棱PA=2,且各面均为直角三角形,则此三棱锥的外接球的体积是$\frac{4π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知函数f(x)=kx2+bx不恒等于0,当k=0时,函数f(x)为奇函数;当b=0时,函数f(x)为偶函数.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.若函数f(x)=$\frac{\sqrt{4-{x}^{2}}}{|x+a|-2}$为奇函数.则a=±2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知如图所示的三棱锥D-ABC的四个顶点均在球O的球面上,△ABC和△DBC所在平面相互垂直,AB=3,AC=$\sqrt{3}$,BC=CD=BD=2$\sqrt{3}$,则球O的表面积为(  )
A.B.12πC.16πD.36π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.求函数y=2asinx-cos2x+a2+2的最大值M(x)和最小值m(x).

查看答案和解析>>

同步练习册答案