精英家教网 > 高中数学 > 题目详情
19.在平面直角坐标系xOy中,圆C1:(x+1)2+(y-6)2=25,圆C2:(x-17)2+(y-30)2=r2,若圆C2上存在一点P,使得过点P可作一条射线与圆C1一次交于点A,B,满足|PA|=2|AB|,则半径r的取值范围是(  )
A.[5,55]B.[5,50]C.[10,50]D.[10,55]

分析 求出两个圆的圆心距,画出示意图,利用已知条件判断半径r的取值范围即可.

解答 解:圆C1:(x+1)2+(y-6)2=25,圆心(-1,6);半径为:5.
圆C2:(x-17)2+(y-30)2=r2.圆心(17,30);半径为:r.
两圆圆心距为:$\sqrt{(17+1)^{2}+(30-6)^{2}}$=30.
如图:PA=2AB,可得AB的最大值为直径,
此时C2A=20,r>0.当半径扩大到55时,此时圆C2上只有一点到C1的距离为25,而且是最小值,半径再大,没有点满足PA=2AB.
∴r∈[5,55].
故选:A.

点评 本题考查两个圆的位置关系.直线与圆的综合应用.考查分析问题解决问题的能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.直线l1:2x-y-1=0与直线l2:mx+4y+2=0互相平行的充要条件是(  )
A.m=-8B.$m=-\frac{1}{2}$C.m=8D.m=2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.若P是椭圆$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1上任意一点,F1、F2是椭圆焦点,则|PF1|•|PF2|的最大值和最小值之差为1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.计算∫x2arctanxdx,可设u=arctanx,dv=$\frac{1}{{x}^{2}}$dx.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.设数列{an}的前n项和为Sn,其中,an≠0,a1为常数,且-a1,Sn,an+1成等差数列.求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.己知圆0:x2+y2=4和点A(1,0),B(-1,0),过点A的动直线l与圆O相交于M,N两点,设$\overrightarrow{BP}$=$\overrightarrow{BM}$+$\overrightarrow{BN}$.
(1)求点P的轨迹方程:
(2)求$\overrightarrow{BM}$•$\overrightarrow{BN}$的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.向量$\overrightarrow{a}$,$\overrightarrow{b}$所在的直线分别是l1,l2
(1)若|$\overrightarrow{a}$+$\overrightarrow{b}$|=|$\overrightarrow{a}$-$\overrightarrow{b}$|,试探讨l1与l2的关系;
(2)试探讨(1)的逆命题是否成立.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知全集U=R,集合A={x|y=$\frac{1}{\sqrt{lo{g}_{\frac{1}{2}}(2x+1)}}$},B={x|($\frac{1}{2}$)x≤1},则∁U(A∪B)=(  )
A.(-∞,0)B.(0,+∞)C.(-∞,-$\frac{1}{2}$]D.(-∞,$\frac{1}{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.y=4x-2x+1的单调递减区间是(-∞,-1].

查看答案和解析>>

同步练习册答案