精英家教网 > 高中数学 > 题目详情
已知向量=(2cos,tan(+)),=(sin(+),tan(-)),令f(x)=
(1)求当x∈()时函数f(x)的值域;
(2)是否存在实数x∈[0,π],使f(x)+f′(x)=0(其中f′(x)是f(x)的导函数)?若存在,则求出x的值;若不存在,则证明之.
【答案】分析:(1)利用两个向量的数量积公式化简函数f(x)的解析式为 sin(x+),根据x的范围,求出函数的值域.
(2)先求出 f′(x)的解析式,由f(x)+f′(x)=0 化简可得cosx=0.再由x∈[0,π],可得当x=时,cosx=0成立,由此得出结论.
解答:解:(1)f(x)==2cossin()+tan(+)tan(-
=2cos (sin+cos)-1=sinx+cosx=sin(x+).
当x∈()时,x+∈(),sin(x+)∈( ).
故函数的值域为 (,1).
(2)∵由上可得 f′(x)=cos(x+),由f(x)+f′(x)=0,
可得 sin(x+)+cos(x+)=0. 即 cosx=0.
再由实数x∈[0,π],可得当x=时,cosx=0成立,即 f(x)+f′(x)=0 成立.
点评:本题主要考查两个向量的数量积公式,两角和差的正弦、余弦公式的应用,正弦函数的定义域和值域,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知向量
a
=(2cosα,2sinα),
b
=(3cosβ,3sinβ),若向量
a
b
的夹角为60°,则直线xcosα-ysinα+
1
2
=0
与圆(x-cosβ)2+(y+sinβ)2=
1
2
的位置关系是(  )
A、相交B、相切
C、相离D、相交且过圆心

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(2cosωx,cos2ωx),
b
=(sinωx,1)(其中ω>0),令f(x)=
a
• 
b
,且f(x)的最小正周期为π.
(1)求f(
π
4
)
的值;
(2)写出f(x)在[-
π
2
π
2
]
上的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
.
a
=( 2cosα,2sinα),
.
b
=( 3sosβ,3sinβ),向量
.
a
.
b
的夹角为30°则cos(α-β)的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
OA
=a=(
2
cosα,
2
sinα)
OB
=b=(2cosβ,2sinβ),其中O为坐标原点,且
π
6
≤α<
π
2
<β≤
6

(1)若
a
⊥(
b
-
a
),求β-α的值;
(2)当
a
•(
b
-
a
)取最小值时,求△OAB的面积S.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•济南二模)已知向量
m
=(2cosωx,-1),
n
=(sinωx-cosωx,2),函数f(x)=
m
n
+3的周期为π.
(Ⅰ) 求正数ω;
(Ⅱ) 若函数f(x)的图象向左平移
π
8
,再横坐标不变,纵坐标伸长到原来的
2
倍,得到函数g(x)的图象,求函数g(x)的单调增区间.

查看答案和解析>>

同步练习册答案