精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系中,记抛物线y=x﹣x2与x轴所围成的平面区域为M,该抛物线与直线y=kx(k>0)所围成的平面区域为N,向区域M内随机抛掷一点P,若点P落在区域N内的概率为 ,则k的值为( )
A.
B.
C.
D.

【答案】A
【解析】解:∵抛物线y=x﹣x2与x轴交于点(0,0)与(1,0),

∴根据定积分的几何意义,可得抛物线与x轴所围成的平面区域M的面积为

S=(x﹣x2)dx=( )| =

设抛物线与直线y=kx(k>0)所围成的平面区域A的面积为S',

∵向区域M内随机抛掷一点P,点P落在区域A内的概率为

= ,可得S'= S=

求出y=x﹣x2与y=kx的交点中,除原点外的点B坐标为(1﹣k,k﹣k2),

可得S'=[(x﹣x2)﹣kx]dx=[ (1﹣k)x2 ]| = (1﹣k)3

因此可得 (1﹣k)3=

解得k=

故选:A

【考点精析】认真审题,首先需要了解几何概型(几何概型的特点:1)试验中所有可能出现的结果(基本事件)有无限多个;2)每个基本事件出现的可能性相等).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=4cosωxsin(ωx+ )+a(ω>0)图象上最高点的纵坐标为2,且图象上相邻两个最高点的距离为π.
(Ⅰ)求a和ω的值;
(Ⅱ)求函数f(x)在[0,π]上的单调递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在D上的函数f(x),如果满足:对任意x∈D,存在常数M>0,都有|f(x)|≤M成立,则称f(x)是D上的有界函数,其中M称为函数f(x)的上界.已知函数
(1)若f(x)是奇函数,求m的值;
(2)当m=1时,求函数f(x)在(﹣∞,0)上的值域,并判断函数f(x)在(﹣∞,0)上是否为有界函数,请说明理由;
(3)若函数f(x)在[0,1]上是以3为上界的函数,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某大学餐饮中心为了了解新生的饮食习惯,在全校一年级学生中进行了抽样调查,调查结果如下表所示:

喜欢甜品

不喜欢甜品

合计

南方学生

60

20

80

北方学生

10

10

20

合计

70

30

100


(1)根据表中数据,问是否有95%的把握认为“南方学生和北方学生在选用甜品的饮食习惯方面有差异”;
(2)已知在被调查的北方学生中有5名数学系的学生,其中2名喜欢甜品,现在从这5名学生中随机抽取3人,求至多有1人喜欢甜品的概率. 附:K2=

P(K2>k0

0.10

0.05


0.01

0.005

k0

2.706

3.841


6.635

7.879

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2﹣2(a﹣2)x﹣b2+13.
(1)先后两次抛掷一枚质地均匀的骰子(骰子六个面上分别标有数字1,2,3,4,5,6),骰子向上的数字一次记为a,b,求方程f(x)=0有两个不等正根的概率;
(2)如果a∈[2,6],求函数f(x)在区间[2,3]上是单调函数的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在长方体ABCD﹣A1B1C1D1中,AA1=2AB=2BC,E,F,E1分别是棱AA1 , BB1 , A1B1的中点.
(1)求证:CE∥平面C1E1F;
(2)求证:平面C1E1F⊥平面CEF.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xoy中,直l线l的参数方程为 (t为参数).在极坐标系(与直角坐标系xoy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,圆C的方程为ρ=10cosθ.
(1)求圆C的直角坐标方程;
(2)设圆C与直线l交于点A、B,若点P的坐标为(2,6),求|PA|+|PB|.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=ln(2x﹣m)的定义域为集合A,函数g(x)= 的定义域为集合B.
(Ⅰ)若BA,求实数m的取值范围;
(Ⅱ)若A∩B=,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】近年来,雾霾日趋严重,我们的工作、生活受到了严重的影响,如何改善空气质量已成为当今的热点问题.某空气净化器制造厂,决定投入生产某型号的空气净化器,根据以往的生产销售经验得到下面有关生产销售的统计规律:每生产该型号空气净化器x(百台),其总成本为P(x)(万元),其中固定成本为12万元,并且每生产1百台的生产成本为10万元(总成本=固定成本+生产成本).销售收入Q(x)(万元)满足Q(x)= ,假定该产品产销平衡(即生产的产品都能卖掉),根据以述统计规律,请完成下列问题:
(1)求利润函数y=f(x)的解析式(利润=销售收入﹣总成本);
(2)工厂生产多少百台产品时,可使利润最多?

查看答案和解析>>

同步练习册答案