设函数
(1)若关于x的不等式在有实数解,求实数m的取值范围;
(2)设,若关于x的方程至少有一个解,求p的最小值.
(3)证明不等式:
(1) (2)p的最小值为0
解析试题分析:
(1)存在性问题,只需要即可,再利用导数法求解f(x)的最大值(即求导,求单调性,求极值9与端点值比较得出最值).
(2)p的最小值为函数g(x)的最小值,利用导数求函数的最小值即可(即求导,求单调性,求极值9与端点值比较得出最值).
(3)利用第二问结果可以得到与不等式有关的恒等式.令.把n=1,2,3,,得n个不等式左右相加,左边利用对数除法公式展开即可用裂项求和法得到不等式的左边,即证得原式
试题解析:
(1)依题意得
,而函数的定义域为
∴在上为减函数,在上为增函数,则在上为增函数
,即实数m的取值范围为 4分
(2) 则
显然,函数在上为减函数,在上为增函数,则函数的最小值为
所以,要使方程至少有一个解,则,即p的最小值为0 8分
(3)由(2)可知: 在上恒成立
所以 ,当且仅当x=0时等号成立
令,则 代入上面不等式得:
即, 即
所以,,,,,
将以上n个等式相加即可得到: 12分
考点:导数 不等式 函数最值
科目:高中数学 来源: 题型:解答题
已知函数f(x)=loga(x+1)(a>1),若函数y=g(x)的图象上任意一点P关于原点对称的点Q的轨迹恰好是函数f(x)的图象.
(1)写出函数g(x)的解析式;
(2)当x∈[0,1)时总有f(x)+g(x)≥m成立,求m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数的定义域为,对定义域内的任意x,满足,当时,(a为常),且是函数的一个极值点,
(1)求实数a的值;
(2)如果当时,不等式恒成立,求实数m的最大值;
(3)求证:
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
两城相距,在两地之间距城处地建一核电站给两城供电.为保证城市安全,核电站距城市距离不得少于.已知供电费用(元)与供电距离()的平方和供电量(亿度)之积成正比,比例系数,若城供电量为亿度/月,城为亿度/月.
(Ⅰ)把月供电总费用表示成的函数,并求定义域;
(Ⅱ)核电站建在距城多远,才能使供电费用最小,最小费用是多少?
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图所示,一种医用输液瓶可以视为两个圆柱的组合体.开始输液时,滴管内匀速滴下球状液体,其中球状液体的半径毫米,滴管内液体忽略不计.
(1)如果瓶内的药液恰好分钟滴完,问每分钟应滴下多少滴?
(2)在条件(1)下,设输液开始后(单位:分钟),瓶内液面与进气管的距离为(单位:厘米),已知当时,.试将表示为的函数.(注:)
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设f(x)和g(x)都是定义在同一区间上的两个函数,若对任意x∈[1,2],都有|f(x)+g(x)|≤8,则称f(x)和g(x)是“友好函数”,设f(x)=ax,g(x)=.
(1)若a∈{1,4},b∈{-1,1,4},求f(x)和g(x)是“友好函数”的概率;
(2)若a∈[1,4],b∈[1,4],求f(x)和g(x)是“友好函数”的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com