精英家教网 > 高中数学 > 题目详情

函数定义在区间都有不恒为零.
(1)求的值;
(2)若求证:
(3)若求证:上是增函数.

(1).(2)(3)见解析

解析试题分析:(1)通过带特殊值可求得;(2)设,同取以为底的对数得,把代入在运用对数运算性质就可得,有,所以,要证只需证,由以上很容易得到,需要证出时,即等号不成立;(3)设,则,所以得时,,任取得证.
试题解析:⑴令
因为,所以.                         3分
⑵设,则,所以

,     5分
因为,所以,所以
.    8分
下面证明当时,
假设存在,则对于任意
,不合题意.所以,当时,
因为,所以存在

所以,所以.                10分
⑶设,则,         12分
为区间内的任意两个值,且,则,由⑵的证明知,

所以,所以上是增函数.            16分
考点:1.函数附特殊值法;2.函数的构造法;3.证明单调函数.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

辽宁号航母纪念章从2012年10月5日起开始上市.通过市场调查,得到该纪念章每1枚的市场价 (单位:元)与上市时间(单位:天)的数据如下:

上市时间
 
4
 
10
 
36
 
市场价
 
90
 
51
 
90
 
(1)根据上表数据结合散点图,从下列函数中选取一个恰当的函数描述辽宁号航母纪念章的市场价与上市时间的变化关系并说明理由:①;②;③
(2)利用你选取的函数,求辽宁号航母纪念章市场价最低时的上市天数及最低的价格.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,P1(x1y1),P2(x2y2),…,Pn(xnyn)(0<y1y2<…<yn)是曲线Cy2=3x(y≥0)上的n个点,点Ai(ai,0)(i=1,2,3,…,n)在x轴的正半轴上,且△Ai-1AiPi是正三角形(A0是坐标原点).
 
(1)写出a1a2a3
(2)求出点An(an,0)(n∈N*)的横坐标an关于n的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数是奇函数,(其中)
(1)求实数m的值;
(2)在时,讨论函数f(x)的增减性;
(3)当x时,f(x)的值域是(1,),求n与a的值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某单位拟建一个扇环面形状的花坛(如图所示),该扇环面是由以点为圆心的两个同心圆弧和延长后通过点的两条直线段围成.按设计要求扇环面的周长为30米,其中大圆弧所在圆的半径为10米.设小圆弧所在圆的半径为米,圆心角为(弧度).

(1)求关于的函数关系式;
(2)已知在花坛的边缘(实线部分)进行装饰时,直线部分的装饰费用为4元/米,弧线部分的装饰费用为9元/米.设花坛的面积与装饰总费用的比为,求关于的函数关系式,并求出为何值时,取得最大值?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

计算
(1)
(2).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数
(1)若关于x的不等式有实数解,求实数m的取值范围;
(2)设,若关于x的方程至少有一个解,求p的最小值.
(3)证明不等式:    

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某单位拟建一个扇环面形状的花坛(如图所示),该扇环面是由以点为圆心的两个同心圆弧和延长后通过点的两条直线段围成.按设计要求扇环面的周长为30米,其中大圆弧所在圆的半径为10米.设小圆弧所在圆的半径为米,圆心角为(弧度).

(1)求关于的函数关系式;
(2)已知在花坛的边缘(实线部分)进行装饰时,直线部分的装饰费用为4元/米,弧线部分的装饰费用为9元/米.设花坛的面积与装饰总费用的比为,求关于的函数关系式,并求出为何值时,取得最大值?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

经市场调查,某种商品在过去50天的销售量和价格均为销售时间t(天)的函数,且销售量近似地满足f(t)=-2t+200(1≤t≤50,t∈N).前30天价格为g(t)=t+30(1≤t≤30,t∈N),后20天价格为g(t)=45(31≤t≤50,t∈N).
(1)写出该种商品的日销售额S与时间t的函数关系;
(2)求日销售额S的最大值.

查看答案和解析>>

同步练习册答案