精英家教网 > 高中数学 > 题目详情

经市场调查,某种商品在过去50天的销售量和价格均为销售时间t(天)的函数,且销售量近似地满足f(t)=-2t+200(1≤t≤50,t∈N).前30天价格为g(t)=t+30(1≤t≤30,t∈N),后20天价格为g(t)=45(31≤t≤50,t∈N).
(1)写出该种商品的日销售额S与时间t的函数关系;
(2)求日销售额S的最大值.

(1);(2)日销售额有最大值6400.

解析试题分析:(1)商品的日销售额=销售量价格,即,因为前30天的价格与后20天的价格不同,故为一个分段函数;
(2)先分别求出两段函数的最大值,一段是二次函数可用配方法,结合定义域的范围,可知最大值在对称轴处取得,令一段是一次函数且为单调减函数,最大值在取得,要注意,再比较哪一个值最大,即为的最大值.
试题解析:(1)根据题意,得
 
(2)①当时,
∴当时,的最大值为6400
②当时,为减函数,
∴当时,的最大值为6210.
∵6210<6400,∴当时,日销售额有最大值6400.
考点:1、函数的实际应用;2、分段函数求最值;3、二次函数、一次函数求最值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

函数定义在区间都有不恒为零.
(1)求的值;
(2)若求证:
(3)若求证:上是增函数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)若函数有两个零点,求的取值范围;
(2)若函数在区间上各有一个零点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知向量,其中.函数在区间上有最大值为4,设.
(1)求实数的值;
(2)若不等式上恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数).
(1)若的定义域和值域均是,求实数的值;
(2)若对任意的,总有,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某开发商用9000万元在市区购买一块土地建一幢写字楼,规划要求写字楼每层建筑面积为2000平方米.已知该写字楼第一层的建筑费用为每平方米4000元,从第二层开始,每一层的建筑费用比其下面一层每平方米增加100元.
(1)若该写字楼共x层,总开发费用为y万元,求函数y=f(x)的表达式;(总开发费用=总建筑费用+购地费用)
(2)要使整幢写字楼每平方米的平均开发费用最低,该写字楼应建为多少层?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,一种医用输液瓶可以视为两个圆柱的组合体.开始输液时,滴管内匀速滴下球状液体,其中球状液体的半径毫米,滴管内液体忽略不计.

(1)如果瓶内的药液恰好分钟滴完,问每分钟应滴下多少滴?
(2)在条件(1)下,设输液开始后(单位:分钟),瓶内液面与进气管的距离为(单位:厘米),已知当时,.试将表示为的函数.(注:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某工厂某种产品的年固定成本为250万元,每生产千件,需另投入成本为,当年产量不足80千件时,(万元).当年产量不小于80千件时,(万元).每件商品售价为0.05万元.通过市场分析,该厂生产的商品能全部售完.
(1)写出年利润(万元)关于年产量(千件)的函数解析式;
(2)年产量为多少千件时,该厂在这一商品的生产中所获利润最大?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

提高过江大桥的车辆通行能力可改善整个城市的交通状况。在一般情况下,大桥上的车流速度v(单位:千米/小时)是车流密度x(单位:辆/千米)的函数。当桥上的的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时,研究表明;当时,车流速度v是车流密度x的一次函数.
(Ⅰ)当时,求函数的表达式;
(Ⅱ)当车流密度为多大时,车流量(单位时间内通过桥上某观点的车辆数,单位:辆/每小时)可以达到最大,并求出最大值(精确到1辆/小时).

查看答案和解析>>

同步练习册答案