精英家教网 > 高中数学 > 题目详情

已知函数).
(1)若的定义域和值域均是,求实数的值;
(2)若对任意的,总有,求实数的取值范围.

(1);(2)

解析试题分析:(1)求出二次函数的对称轴是关键.通过对称轴知道函数f(x)在上单调递减.在结合已知条件即可得两个等式.求出结论.
(2)条件表示的含义是函数f(x)在上的最大值与最小值的差小于或等于4.因为函数f(x)的对称轴为.所以要将的值分两类.再根据单调性即可求得的范围.本题的函数的背景是二次函数所以抓住对称轴展开研究函数的最值单调性.同时分类的思想是解题的关键.
试题解析:(1)因为.所以f(x)在是减函数,又定义域和值域为所以.即.解得.
(2)若.又,且.所以..因为对任意的.总有.所以.即.解得.又.所以.若...显然成立.综上.
考点:1.二次函数的对成性.2.函数的最值问题.3.分类思想想.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

某单位拟建一个扇环面形状的花坛(如图所示),该扇环面是由以点为圆心的两个同心圆弧和延长后通过点的两条直线段围成.按设计要求扇环面的周长为30米,其中大圆弧所在圆的半径为10米.设小圆弧所在圆的半径为米,圆心角为(弧度).

(1)求关于的函数关系式;
(2)已知在花坛的边缘(实线部分)进行装饰时,直线部分的装饰费用为4元/米,弧线部分的装饰费用为9元/米.设花坛的面积与装饰总费用的比为,求关于的函数关系式,并求出为何值时,取得最大值?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数是奇函数.
(1)求m的值:
(2)设.若函数的图象至少有一个公共点.求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如果函数满足在集合上的值域仍是集合,则把函数称为N函数.
例如:就是N函数.
(Ⅰ)判断下列函数:①,②,③中,哪些是N函数?(只需写出判断结果);
(Ⅱ)判断函数是否为N函数,并证明你的结论;
(Ⅲ)证明:对于任意实数,函数都不是N函数.
(注:“”表示不超过的最大整数)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某自来水厂的蓄水池存有400吨水,水厂每小时可向蓄水池中注水60吨,同时蓄水池又向居民小区不间断供水,小时内供水总量为吨(),从供水开始到第几小时时,蓄水池中的存水量最少?最少水量是多少吨?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

经市场调查,某种商品在过去50天的销售量和价格均为销售时间t(天)的函数,且销售量近似地满足f(t)=-2t+200(1≤t≤50,t∈N).前30天价格为g(t)=t+30(1≤t≤30,t∈N),后20天价格为g(t)=45(31≤t≤50,t∈N).
(1)写出该种商品的日销售额S与时间t的函数关系;
(2)求日销售额S的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

,两个函数的图像关于直线对称.
(1)求实数满足的关系式;
(2)当取何值时,函数有且只有一个零点;
(3)当时,在上解不等式

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

计算:⑴  ;⑵

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数
(I)解不等式
(II)求函数的最小值.

查看答案和解析>>

同步练习册答案