【题目】下列命题中,真命题的个数是( )
①若“p∨q”为真命题,则“p∧q”为真命题;
②“a∈(0,+∞),函数y=在定义域内单调递增”的否定;
③l为直线,α,β为两个不同的平面,若l⊥β,α⊥β,则l∥α;
④“x∈R,≥0”的否定为“R,<0”.
A. B. C. D.
【答案】A
【解析】
利用复合命题的真假判断①的正误;利用指数函数的单调性判断②的正误;直线与平面垂直关系判断③的正误;根据全称命题的否定的写法判断④的正误;
①若“p∨q”为真命题,可知两个命题至少一个是真命题,判断为“p∧q”有可能是假命题,不正确;
②“a∈(0,+∞),函数y=ax在定义域内单调递增”的否定:“a∈(0,+∞),函数y=ax在定义域内不是单调递增的”;例如a=,在定义域内单调递减;所以②正确;
③l为直线,α,β为两个不同的平面,若l⊥β,α⊥β,则l∥α;也可能lα,所以③不正确;
④“x∈R,x2≥0”的否定的正确写法为“,使得<0”.故选项不满足命题的否定形式,所以④不正确;
只有②是真命题;
故选:A.
科目:高中数学 来源: 题型:
【题目】某幼儿园雏鹰班的生活老师统计2018年上半年每个月的20日的昼夜温差,和患感冒的小朋友人数(/人)的数据如下:
温差 | ||||||
患感冒人数 | 8 | 11 | 14 | 20 | 23 | 26 |
其中,,.
(Ⅰ)请用相关系数加以说明是否可用线性回归模型拟合与的关系;
(Ⅱ)建立关于的回归方程(精确到),预测当昼夜温差升高时患感冒的小朋友的人数会有什么变化?(人数精确到整数)
参考数据:.参考公式:相关系数:,回归直线方程是, ,
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】树立和践行“绿水青山就是金山银山,坚持人与自然和谐共生”的理念越来越深入人心,已形成了全民自觉参与,造福百姓的良性循环.据此,某网站推出了关于生态文明建设进展情况的调查,大量的统计数据表明,参与调查者中关注此问题的约占80%.现从参与调查的人群中随机选出人,并将这人按年龄分组:第1组,第2组,第3组,第4 组,第5组,得到的频率分布直方图如图所示
(1) 求的值
(2)现在要从年龄较小的第1,2,3组中用分层抽样的方法抽取人,再从这人中随机抽取人进行问卷调查,求在第1组已被抽到人的前提下,第3组被抽到人的概率;
(3)若从所有参与调查的人中任意选出人,记关注“生态文明”的人数为,求的分布列与期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,已知圆的方程为,圆的方程为,动圆与圆内切且与圆外切.
(1)求动圆圆心的轨迹的方程;
(2)已知与为平面内的两个定点,过点的直线与轨迹交于,两点,求四边形面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知双曲线=1(a>0,b>0)的右焦点为F,P,Q为双曲线上关于原点对称的两点,若=0,且∠POF<,则该双曲线的离心率的取值范围为______.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数为偶函数,且函数的图象的两相邻对称轴间的距离为.
(1)求的值;
(2)将函数的图象向右平移个单位长度后,再将得到的图象上各点的横坐标伸长为原来的4倍,纵坐标不变,得到函数的图象,求函数的单调递减区间.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列说法:
①集合{x∈N|x3=x}用列举法表示为{-1,0,1};
②实数集可以表示为{x|x为所有实数}或{R};
③方程组的解集为{x=1,y=2}.
其中正确的有( )
A.3个B.2个
C.1个D.0个
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com