椭圆
的一个焦点
与抛物线
的焦点重合,且截抛物线的准线所得弦长为
,倾斜角为
的直线
过点
. (Ⅰ)求该椭圆的方程;
(Ⅱ)设椭圆的另一个焦点为
,问抛物线
上是否存在一点
,使得
与
关于直线
对称,若存在,求出点
的坐标,若不存在,说明理由.
科目:高中数学 来源: 题型:
已知椭圆
的一个焦点与抛物线
的焦点
重合,且椭圆短轴的两个端点与
构成正三角形。
(Ⅰ)求椭圆的方程;
(Ⅱ)若过点
的直线
与椭圆交于不同两点
,试问在
轴上是否存在定点
,使
恒为定值?若存在,求出
的坐标及定值;若不存在,请说明理由。
查看答案和解析>>
科目:高中数学 来源:2013届山东冠县武训高中高二下第二次模块考试文科数学试卷(解析版) 题型:解答题
已知椭圆
的离心率
,它的一个焦点与抛物线
的焦点重合,过椭圆右焦点
作与坐标轴不垂直的直线
,交椭圆于
两点.
(1)求椭圆标准方程;
(2)设点
,且
,求直线
方程.
查看答案和解析>>
科目:高中数学 来源:2010-2011学年河北省高三12月月考数学理卷 题型:解答题
已知椭圆的方程为
,它的一个焦点与抛物线
的焦点重合,离心率
,过椭圆的右焦点
作与坐标轴不垂直的直线
,交椭圆于
、
两点.
(Ⅰ)求椭圆的标准方程; (Ⅱ)设点
,且
,求直线
的方程;
查看答案和解析>>
科目:高中数学 来源:2010-2011学年云南省高三1月月考数学理卷 题型:解答题
((本小题满分12分)
已知椭圆
的一个焦点与抛物线
的焦点
重合,且椭圆短轴的两个端点与
构成正三角形.
(Ⅰ)求椭圆的方程;
(Ⅱ)若过点
的直线
与椭圆交于不同两点
,试问在
轴上是否存在定点
,使
恒为定值? 若存在,求出
的坐标及定值;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com