精英家教网 > 高中数学 > 题目详情
17.某种产品的质量分为优质、合格、次品三个等级,其数量比例依次为40%,55%,5%.其中优质品和合格品都能正常使用;而次品无法正常使用,厂家会无理由退货或更换.
(Ⅰ)小李在市场上购买一件这种产品,求此件产品能正常使用的概率;
(Ⅱ)若小李购买此种产品3件,设其中优质产品件数为ξ,求ξ的分布列及其数学期望E(ξ)和方差D(ξ).

分析 (Ⅰ)根据题意,计算购买一件这种产品能正常使用的概率值;
(Ⅱ)根据题意,得出ξ的可能取值,求出对应的概率值,列出ξ的分布列,计算数学期望与方差.

解答 解:(Ⅰ)根据题意,购买一件这种产品,此件产品能正常使用的概率为
P=40%+55%=0.95;
(Ⅱ)购买此种产品3件,设其中优质产品件数为ξ,
则ξ的可能取值为0、1、2、3,
所以P(ξ=0)=${C}_{3}^{0}$•(1-0.4)3=0.216,
P(ξ=1)=${C}_{3}^{1}$×0.4×(1-0.4)2=0.432,
P(ξ=2)=${C}_{3}^{2}$×0.42×(1-0.4)=0.288,
P(ξ=3)=${C}_{3}^{3}$×0.43=0.064;
所以ξ的分布列如下表:

ξ0123
P0.2160.4320.2880.064
ξ的数学期望为E(ξ)=0×0.216+1×0.432+2×0.288+3×0.064=1.2,
方差为D(ξ)=3×0.4×(1-0.4)=0.72.

点评 本题考查了n次独立实验的概率计算问题,也考查了离散型随机变量的分布列与数学期望、方差,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.下列命题中正确的是(  )
A.若直线l与平面α平行,则l与平面α内的任意一条直线都没有公共点
B.若直线l与平面α平行,则l与平面α内的任意一条直线都平行
C.若直线l上有无数个点不在平面α内,则l∥α
D.如果两条平行线中的一条与一个平面平行,那么另一条也与这个平面平行

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=x2-ax+1,g(x)=4x-4•2x-a,其中a∈R.
(1)当a=0时,求函数g(x)的值域;
(2)若对任意x∈[0,2],均有|f(x)|≤2,求a的取值范围;
(3)当a<0时,设h(x)=$\left\{\begin{array}{l}{f(x),x>a}\\{g(x),x≤a}\end{array}\right.$,若h(x)的最小值为-$\frac{7}{2}$,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)的定义域是{x|x≠0}的一切实数,对定义域内的任意x1,x2都有f(x1•x2)=f(x1)+f(x2),且当x>1时,f(x)<0,f(2)=-1.
(1)求证:f(x)是偶函数;
(2)求证:f(x)在(0,+∞)上是减函数;
(3)解不等式f(x2-1)<2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若x,y满足不等式组$\left\{\begin{array}{l}x+y≥2\\ x≤1\\ y≤2\end{array}$,则z=$\frac{1}{2}$x+y的最小值是(  )
A.1B.$\frac{3}{2}$C.$\frac{5}{2}$D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.底面为边长是n的正方形的四棱锥的直观图、正视图和俯视图如图所示,画出该几何体的侧视图,并求出该四棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.为研究变量x和y的线性相关性,甲、乙二人分别作了研究,两人计算知$\overline{x}$相同,$\overline{y}$也相同,则得到的两条回归直线(  )
A.一定重合B.一定平行C.一定有公共点($\overline{x}$,$\overline{y}$)D.以上都不正确

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知m,n是不同的直线,α、β是不同的平面,下列命题中,正确的是(  )
A.若α⊥β,α∩β=m,n⊥m,则n⊥α或n⊥βB.若α∥β,m?α,n?α,则m∥n
C.若m⊥α,n⊥β,α∥β,则m∥nD.若α∩β=m,n∥m,则n∥α,且n∥β

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,在四棱锥P-ABCD中,底面ABCD为直角梯形,AD∥BC,∠ADC=90°,平面PAD⊥平面ABCD,Q为AD的中点,PA=PD,BC=$\frac{1}{2}$AD=1,CD=$\sqrt{3}$.
(1)求证:平面PQB⊥平面PAD;
(2)若异面直线AB与PC所成角为60°,求PA的长;
(3)在(2)的条件下,求平面PQB与平面PDC所成锐二面角的余弦值.

查看答案和解析>>

同步练习册答案