精英家教网 > 高中数学 > 题目详情
2.设集合A={x|-1<x<3},B={x|x+a>0},若A⊆B,则实数a的取值范围.

分析 先求出B={x|x>-a},而根据A⊆B便有:-a≤-1,这样即可得出实数a的取值范围.

解答 解:B={x|x>-a};
∵A⊆B;
∴-a≤-1;
∴a≥1;
即实数a的取值范围为:[1,+∞).

点评 考查描述法表示集合,子集的概念,也可借助数轴.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.定义函数f(x)的导函数为f′(x),已知若f(x)=xk(k∈Z),则f′(x)=kxk-1,并且有如下运算律成立;
(1)(f(x)+g(x))′=f′(x)+g′(x);
(2)(f(x)-g(x))′=f′(x)-g′(x);
(3)(f(x)•g(x))′=f(x)•g′(x)+f′(x)-g(x);
(4)($\frac{f(x)}{g(x)}$)′=$\frac{g(x)•f′(x)-f(x)•g′(x)}{(g(x))^{2}}$.
导函数在求函数最值时有很大的作用,已知函数在某个区间上的最大值和最小值必在区间的端点或使导函数为0的x处取到.请根据上述结论.回答下列问题:
(1)求下列函数的导函数:f1(x)=x3;f2(x)=x-2
(2)求下列函数的导函数:g1(x)=x2(x-3);g2(x)=$\frac{x}{x+2}$.
(3)求函数f(x)=$\frac{1}{3}$x2-x-3当区间[-$\frac{3}{2}$,$\frac{3}{2}$]内取值时的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.集合M={(x,y)||xy|=1,x>0},N={(x,y)|xy=-1},求M∪N.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.f(x)=2x+sinx为定义在(-1,1)上的函数,则不等式f(1-a)+f(1-2a)<0的解集是($\frac{2}{3}$,1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,0≤φ<2π)的部分图象如图所示
(1)写出函数f(x)的最小正周期及解析式(不要求解题过程)
(2)将函数f(x)的图象上各点的横坐标伸长到原来的2倍,纵坐标不变,得到函数y=g(x)的图象.求函数g(x)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在△ABC中,已知$\frac{cosA}{cosB}$=$\frac{b}{a}$=$\frac{2014}{2015}$,试判断△ABC的形状.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<π),x∈R的最大值是1,且函数最大值与最小值间对应的横坐标最小距离为π,其图象经过点M($\frac{π}{3}$,$\frac{1}{2}$).
(Ⅰ)求f(x)的解析式;
(Ⅱ)设f(α)=$\frac{2\sqrt{5}}{5}$,f(β+$\frac{π}{2}$)=-$\frac{\sqrt{10}}{10}$,α∈(0,$\frac{π}{2}$),β∈(0,$\frac{π}{2}$),求sinα,cosβ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.(1+2x)10的展开式中各项的系数和为310

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.在区间(a,b)内,若f(x)是增函数,g(x)是减函数,则f(x)-g(x)是增函数.

查看答案和解析>>

同步练习册答案