精英家教网 > 高中数学 > 题目详情

斜率为1的直线与抛物线y2=2x交于不同两点A、B,求线段AB中点M的轨迹方程.

解:设M的坐标为(x,y),斜率为1的直线方程为y=x+m,且A(x1,y1)、B(x2,y2),
消去y,得x2+(2m-2)x+m2=0,
根据一元二次方程根与系数的关系,得
∵点M是线段AB的中点,
,y=x+m=1,
∵直线与抛物线有两个不同交点,
∴△=(2m-2)2-4m2>0,解之得
结合x=1-m可得M横坐标的范围是(,+∞),
因此,线段AB中点M的轨迹方程为:
分析:设斜率为1的直线方程为y=x+m,且A(x1,y1)、B(x2,y2),由直线与抛物线方程消去y得到关于x的一元二次方程(m为参数),利用根与系数的关系,得到x1+x2与x1x2关于m的表示式.设M(x,y),由中点坐标公式算出x=1-m且y=x+m=1,最后根据一元二次方程根的判别式算出m,进而得到x,可得线段AB中点M的轨迹方程.
点评:本题给出斜率为1的直线与抛物线相交于点A、B,求线段AB中点的轨迹方程,着重考查了抛物线的简单几何性质、直线与抛物线的位置关系和轨迹方程的求法等知识,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在直角坐标平面上有一点列P1(x1,y1),P2(x2,y2),…,Pn(xn,yn),…,对一切正整数n,点Pn在函数y=3x+
13
4
的图象上,且Pn的横坐标构成以-
5
2
为首项,-1为公差的等差数列{xn}.
(1)求点Pn的坐标;
(2)设抛物线列C1,C2,C3,…,Cn,…中的每一条的对称轴都垂直于x轴,抛物线Cn的顶点为Pn,且过点Dn(0,n2+1).记与抛物线Cn相切于点Dn的直线的斜率为kn,求
1
k1k2
+
1
k2k3
+…+
1
kn-1kn

(3)设S={x|x=2xn,n∈N*},T={y|y=4yn,n∈N*},等差数列{an}的任一项an∈S∩T,其中a1是S∩T中的最大数,-265<a10<-125,求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标上有一点列P1(x1,y1),P2(x2,y2)…,Pn(xn,yn)…,对一切正整数n,点Pn在函数
y=3x+
13
4
的图象上,且Pn的横坐标构成以-
5
2
为首项,-1为公差的等差数列{xn}.
(Ⅰ)求点Pn的坐标;
(Ⅱ)设抛物线列C1,C2,C3,…Cn,…中的每一条的对称轴都垂直于x轴,抛物线Cn的顶点为Pn,且过点Dn(0,n2+1),记与抛物线Cn相切于点Dn的直线的斜率为Kn,求
1
k1k2
+
1
k2k3
+…+
1
knkn+1
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(08年聊城市四模理) (14分)  在直角坐标平面上有一点列位于直线上,且Pn的横坐标构成以为首项,-1为公差的等差数列{xn}.

   (1)求点Pn的坐标;

   (2)设抛物线列C1C2,…,Cn,…中的每一条的对称轴都垂直于x轴,第n条抛物线Cn的顶点为Pn,且经过点Dn(0,n2+1). 记与抛物线Cn相切于点Dn的直线的斜率为kn,求证:

   (3)设,等差数列{an}的任意一项,其中a1ST中的最大数,且-256<a10­<-125,求数列{an}通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

AnBn分别表示数列{an}和{bn}的前n项和,对任何正整数nan=-,4Bn-12An=13n.

(1)求数列{bn}的通项公式;

(2)设有抛物线列C1C2,…,Cn,…,抛物线Cn(nN*)的对称轴平行于y轴,顶点为(an,bn),且通过点Dn(0,n2+1),过点Dn且与抛物线Cn相切的直线的斜率为kn,求极限.

(3)设集合X={x|x=2an,nN*},Y={y|y=4bn,nN*},若等差数列{Cn}的任一项Cn∈X∩Y,C1是X∩Y中的最大数,且-265<C10<-125,求{Cn}的通项公式.

查看答案和解析>>

科目:高中数学 来源:2011届江苏省苏州市红心中学高三摸底考试数学卷 题型:解答题

(本小题满分12分)在直角坐标平面上有一点列 对一切正整数n,点Pn在函数的图象上,且Pn的横坐标构成以为首项,-1为公差的等差数列{xn}.
(1)求点Pn的坐标;
(2)设抛物线列C1,C2,C3,…,Cn,…中的每一条的对称轴都垂直于x轴,抛物线Cn的顶点为Pn,且过点Dn(0,).记与抛物线Cn相切于点Dn的直线的斜率为kn,求
(3)等差数列的任一项,其中中的最大数,,求数列的通项公式.

查看答案和解析>>

同步练习册答案