精英家教网 > 高中数学 > 题目详情
如图,边长为2的正方形ACDE所在的平面与平面ABC垂直,AD与CE的交点为M,AC⊥BC,且AC=BC.
(1)求证:AM⊥平面EBC;
(2)求二面角A-EB-C的大小.
分析:(1)利用线面垂直的判定定理证明.
(2)建立空间直角坐标,利用向量法求二面角的大小.
解答:解:∵四边形ACDE是正方形,所以EA⊥AC,AM⊥EC,
∵平面ACDE⊥平ABC,
∴EA⊥平面ABC,
∴可以以点A为原点,以过A点平行于BC的直线为x轴,
分别以直线AC和AE为y轴和z轴,建立如图所示的空间直角坐标系A-xyz.
设EA=AC=BC=2,则A(0,0,0),B(2,2,0),C(0,2,0),E(0,0,2),
∵M是正方形ACDE的对角线的交点,
∴M(0,1,1).
(1)
AM
=(0,1,1)
EC
=(0,2,0)-(0,0,2)=(0,2,-2)
CB
=(2,2,0)-(0,2,0)=(2,0,0)

AM
EC
=0,
AM
CB
=0

∴AM⊥EC,AM⊥CB,
∴AM⊥平面EBC.
(2)设平面EBC的法向量为
n
=(x,y,z)
,则
n
AE
n
AB

n
AE
=0,
n
AB
=0

2z=0
2x+2y=0
,取y=-1,则x=1,则
n
=(1,-1,0)

又∵
AM
为平面EBC的一个法向量,且)
AM
=(0,1,1)

cos<
n
AM
>=
n
?
AM
|
n
||
AM
|
=-
1
2

设二面角A-EB-C的平面角为θ,则cosθ=|cos<
n
AM
>|=
1
2

∴二面角A-EB-C等60°.
点评:本题主要考查线面垂直的判定定理以及利用向量法求二面角的大小,运算量较大.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图放置的边长为1的正三角形PAB沿x轴滚动,设顶点A(x,y)的纵坐标与横坐标的函数关系式是y=f(x),则f(x)在区间[-2,1]上的解析式是
 
;(说明:“正三角形PAB沿x轴滚动”包括沿x轴正方向和沿x轴负方向滚动.沿x轴正方向滚动指的是先以顶点A为中心顺时针旋转,当顶点B落在x轴上时,再以顶点B为中心顺时针旋转,如此继续;类似地,正三角形PAB也可以沿x轴负方向逆时针滚动)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•洛阳一模)如图放置的边长为1的正三角形ABC沿x轴的正方向滚动,设顶点A(x,y)的纵坐标与横坐标的函数关系是y=f(x).则f(x)在两个相邻零点间的图象与x轴围成的面积是
3
+
3
4
3
+
3
4

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,过正方形ABCD的中心O作OP⊥平面ABCD,已知正方形的边长为2,OP=2,连接AP、BP、CP、DP,M、N分别是AB、BC的中点,以O为原点,射线OM、ON、OP分别为Ox轴、Oy轴、Oz轴的正方向建立空间直角坐标系.若E、F分别为PA、PB的中点,求A、B、C、D、E、F的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图放置的边长为2的正方形PABC沿x轴滚动.设顶点P(x,y)的纵坐标与横坐标的函数关系是y=f(x),则f(x)的最小正周期为
 
;  y=f(x)在其两个相邻零点间的图象与x轴所围区域的面积为
 

(说明:“正方形PABC 沿x轴滚动”包括沿x轴正方向和沿x轴负方向滚动.沿x轴正方向滚动指的是先以顶点A为中心顺时针旋转,当顶点B落在x轴上时,再以顶点B为中心顺时针旋转,如此继续.类似地,正方形PABC可以沿x轴负方向滚动.)

查看答案和解析>>

科目:高中数学 来源:2010-2011学年广东省四校联考高三(上)期末数学试卷(解析版) 题型:填空题

如图放置的边长为1的正三角形PAB沿x轴滚动,设顶点A(x,y)的纵坐标与横坐标的函数关系式是y=f(x),则f(x)在区间[-2,1]上的解析式是    ;(说明:“正三角形PAB沿x轴滚动”包括沿x轴正方向和沿x轴负方向滚动.沿x轴正方向滚动指的是先以顶点A为中心顺时针旋转,当顶点B落在x轴上时,再以顶点B为中心顺时针旋转,如此继续;类似地,正三角形PAB也可以沿x轴负方向逆时针滚动)

查看答案和解析>>

同步练习册答案