分析 (1)由已知可得:$\frac{sinA}{sinC}$=$\frac{a}{2}$,又由正弦定理及比例的性质可得:$\frac{sinA}{sinC}$=$\frac{a}{c}$,从而解得c的值.
(2)利用余弦定理可求cosB,解得sinB,利用三角形面积公式即可得解.
解答 解:(1)∵2sinA=asinC,可得:$\frac{sinA}{sinC}$=$\frac{a}{2}$,
又由正弦定理及比例的性质可得:$\frac{sinA}{sinC}$=$\frac{a}{c}$,
∴$\frac{a}{2}=\frac{a}{c}$,解得:c=2.
(2)∵a=$\sqrt{3}$,b=3,c=2.
∴cosB=$\frac{{a}^{2}+{c}^{2}-{b}^{2}}{2ac}$=$\frac{3+4-9}{2×\sqrt{3}×2}$=-$\frac{\sqrt{3}}{6}$,解得:sinB=$\sqrt{1-co{s}^{2}B}$=$\frac{\sqrt{33}}{6}$,
∴S△ABC=$\frac{1}{2}$acsinB=$\frac{1}{2}×\sqrt{3}×2×$$\frac{\sqrt{33}}{6}$=$\frac{\sqrt{11}}{2}$
点评 本题主要考查了正弦定理,比例的性质,余弦定理,三角形面积公式在解三角形中的综合应用,考查了计算能力和转化思想,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com