精英家教网 > 高中数学 > 题目详情
已知是椭圆的左右焦点,上一点,,则的离心率的取值范围是(  )
A.B.C.D.
D
因为
所以当且仅当时取等号
所以,即,所以,则,故选D
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)设椭圆C:的左、右焦点分别为,点满足  
(Ⅰ)求椭圆C的离心率
(Ⅱ)若已知点,设直线与椭圆C相交于A,B两点,且
求椭圆C的方程。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

.(本小题满分14分)
已知椭圆的左焦点为,离心率e=,M、N是椭圆上的动
点。
(Ⅰ)求椭圆标准方程;
(Ⅱ)设动点P满足:,直线OM与ON的斜率之积为,问:是否存在定点
使得为定值?,若存在,求出的坐标,若不存在,说明理由。
(Ⅲ)若在第一象限,且点关于原点对称,点轴上的射影为,连接 并延长
交椭圆于点,证明:

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分15分) 已知抛物线的顶点是椭圆的中心,焦点与该椭圆的右焦点重合.
(1)求抛物线的方程;
(2)已知动直线过点,交抛物线两点.
若直线的斜率为1,求的长;
是否存在垂直于轴的直线被以为直径的圆所截得的弦长恒为定值?如果存在,求出的方程;如果不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

与椭圆共焦点,且两条准线间的距离为的双曲线方程为(  )
A. B.  C.     D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

椭圆中心在原点,且经过定点,其一个焦点与抛物线的焦点重合,则该椭圆的方程为          

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分15分)如图,点为圆形纸片内不同于圆心的定点,动点在圆周上,将纸片折起,使点与点重合,设折痕交线段于点.现将圆形纸片放在平面直角坐标系中,设圆,记点的轨迹为曲线.
⑴证明曲线是椭圆,并写出当时该椭圆的标准方程;
⑵设直线过点和椭圆的上顶点,点关于直线的对称点为点,若椭圆的离心率,求点的纵坐标的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在双曲线中,,且双曲线与椭圆有公共焦点,则双曲线的方程是(         )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知椭圆(a>b>0)的离心率,过顶点A、B的直线与原点的距离为

(1)求椭圆的方程.
(2)已知定点E(-1,0),若直线y=kx+2(k≠0)与椭圆交于C、D两点.问:是否存在k的值,使以CD为直径的圆过E点?请说明理由.

查看答案和解析>>

同步练习册答案