精英家教网 > 高中数学 > 题目详情

设函数f(x)=sinx+cosx,g(x)=f(x)•f′(x)+[f(x)]2
(Ⅰ)求g(x)的周期和最大值;
(Ⅱ)求g(x)的单调递增区间.

解:(1)∵f(x)=cosx-sinx,
∴g(x)=(sinx+cosx)(cosx-sinx)+(sinx+cosx)2=cos2x+sin2x+1=
∴T==π.
,即(k∈Z)时,取得最大值1,
此时,函数g(x)取得最大值
(2)由 解得
∴函数g(x)的单调递增区间为(k∈Z).
分析:(1)先求导,再利用倍角公式和两角和的正弦公式即可化为g(x)=Asin(ωx+φ)+K的形式,即可求出其周期及最值;
(2)利用正弦函数的单调性即可求出其单调递增区间.
点评:熟练掌握导数的运算法则、三角函数的倍角公式、两角和差的正弦余弦公式及三角函数的图象和性质是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=sinx,g(x)=
1
x
,如图是函数F(x)图象的一部分,则F(x)是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•宝坻区一模)设函数f(x)=sinx+cos(x+
π
6
),x∈R.
(1)求函数f(x)的最小正周期及在区间[0,
π
2
]上的值域;
(2)记△ABC的内角A,B,C的对边分别为a,b,c,若f(A)=
3
2
,且a=
3
2
b,求角B的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义运算a*b为:a*b=
a(a≤b)
b(a>b)
,例如1*2=1,2*1=1,设函数f(x)=sinx*cosx,则函数f(x)的最小正周期为
,使f(x)>0成立的集合为
(2kπ,2kπ+
π
2
)
(2kπ,2kπ+
π
2
)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•杭州一模)设函数f(x)=
sinx+cosx-|sinx-cosx|
2
(x∈R),若在区间[0,m]上方程f(x)=-
3
2
恰有4个解,则实数m的取值范围是
[
3
17π
6
)
[
3
17π
6
)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•安徽)设函数f(x)=sinx+sin(x+
π3
).
(Ⅰ)求f(x)的最小值,并求使f(x)取得最小值的x的集合;
(Ⅱ)不画图,说明函数y=f(x)的图象可由y=sinx的图象经过怎样的变化得到.

查看答案和解析>>

同步练习册答案