精英家教网 > 高中数学 > 题目详情
13.如图,在三棱柱ABC-A1B1C1中,底面△ABC是边长为2的等边三角形,过A1C作平面A1CD平行于BC1,交AB于D点,
(Ⅰ)求证:CD⊥AB
(Ⅱ)若四边形BCC1B1是正方形,且A1D=5$\sqrt{5}$,求直线A1D与平面CBB1C1所成角的正弦值.

分析 (Ⅰ)连结AC1,设AC1与A1C相交于点E,连接DE,则E为AC1中点,证明D为AB的中点,即可证明:CD⊥AB
(Ⅱ)取B1C1的中点H,连结A1H,证明∠A1FH为直线A1D与平面BCC1B1所成的角,即可得出结论.

解答 (I)证明:连结AC1,设AC1与A1C相交于点E,连接DE,则E为AC1中点,(2分)
∵BC1∥平面A1CD,DE=平面A1CD∩平面ABC1
∴DE∥BC1,(4分)
∴D为AB的中点,
又∵△ABC为正△,∴CD⊥AB-(6分)
( II)解:取B1C1的中点H,连结A1H,则A1H⊥B1C1(7分)
∵四边形BCC1B1是正方形,且A1D=$\sqrt{5}$,D为AB的中点,
∴AA1⊥AD,AA1⊥A1C,
∴AA1⊥面A1B1C1,故AA1⊥A1H,∴BB1⊥A1H.
∵B1C1∩BB1=B1,∴A1H⊥面BCCB1------(9分)
延长A1D,B1B相交于点F,连结FH,

则∠A1FH为直线A1D与平面BCC1B1所成的角.(10分)
因为D为AB的中点,故A1F=2$\sqrt{5}$,又A1H=$\sqrt{3}$
∴sin∠A1FH=$\frac{\sqrt{15}}{10}$,
即直线A1D与平面BCC1B1所成的角的正弦值为$\frac{\sqrt{15}}{10}$.(12分)

点评 本题考查线线垂直的证明,考查直线A1D与平面BCC1B1所成的角的正弦值,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.已知x,y取值如表:
x01456
y1.3m3m5.67.4
画散点图分析可知,y与x线性相关,且回归直线方程$\stackrel{∧}{y}$=x+1,则实数m的值为(  )
A.1.426B.1.514C.1.675D.1.732

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=x2+ax+1,a∈R,g(x)=ex(其中e是自然数的底数).
(1)记函数H(x)=$\frac{f(x)}{g(x)}$,求H(x)的单调区间;
(2)若对任意的x1,x2∈[0,2],且x1>x2,均有|f(x1)-f(x2)|<|g(x1-g(x2))|成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.幂函数f(x)=f(x)的图象过点(2,$\frac{\sqrt{2}}{2}$),则f(x)为(  )
A.y=x${\;}^{\frac{1}{2}}$B.y=$\frac{1}{{x}^{2}}$C.y=x${\;}^{-\frac{1}{2}}$D.y=$\sqrt{2}$x-1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.下面有5个命题:
①函数y=sin4x-cos4x的最小正周期是π.
②若α为第二象限角,则$\frac{α}{3}$在一、三、四象限;
③在同一坐标系中,函数y=sin x的图象和函数y=x的图象有3个公共点.
④把函数y=3sin(2x+$\frac{π}{3}$)的图象向右平移$\frac{π}{6}$得到y=3sin2x的图象.
⑤函数y=sin(x-$\frac{π}{2}$)在[0,π]上是减函数.
其中,真命题的编号是①④.(写出所有真命题的编号)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.某中学有甲乙两个文科班进行数学考试,按照大于或等于120分为优秀,120分以下为非优秀统计成绩后,得到如下列联表:
优秀非优秀合计
20525
101525
合计302050
(1)用分层抽样的方法在优秀的学生中抽6人,其中甲班抽多少人?
(2)计算出统计量k2,能否有95%的把握认为“成绩与班级有关”?
下面的临界值表代参考:
P(k2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
(参考公式k2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$其中n=a+b+c+d.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.(1)在△ABC中,已知边$BC=\sqrt{3},AC=\sqrt{2}$,已知角B=45°,求角A;
若该题中的条件改为边$BC=\sqrt{3},AC=\sqrt{2}$,已知角A=60°,求角B;请根据该题的解答归纳判断解三角形的一个解、两个解的依据;
(2)A,B,C的对边分别是a,b,c,已知3acosA=ccosB+bcosC,求A的值;
(3)在△ABC中,内角A,B,C的对边分别是a,b,c,若a2-b2=$\sqrt{3}$bc,$sinC=2\sqrt{3}sinB$,求角A;
(4)在锐角△ABC,A,B,C的对边分别是a,b,c,$\frac{b}{a}+\frac{a}{b}=6cosC$,求$\frac{tanC}{tanA}+\frac{tanC}{tanB}的值$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知f′(x)为y=f(x)的导函数,且f′(x0)=a,则$\lim_{△x→0}\frac{{f({x_0}-△x)-f({x_0})}}{△x}$=(  )
A.aB.-aC.±aD.无法确定

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知三棱锥S-ABC所有顶点都在球O的表面上,且SC⊥平面ABC,若SC=AB=AC=1,∠BAC=120°,则球O的表面积为(  )
A.$\frac{5}{2}$πB.C.D.$\frac{5}{3}$π

查看答案和解析>>

同步练习册答案