5£®£¨1£©ÔÚ¡÷ABCÖУ¬ÒÑÖª±ß$BC=\sqrt{3}£¬AC=\sqrt{2}$£¬ÒÑÖª½ÇB=45¡ã£¬Çó½ÇA£»
Èô¸ÃÌâÖеÄÌõ¼þ¸ÄΪ±ß$BC=\sqrt{3}£¬AC=\sqrt{2}$£¬ÒÑÖª½ÇA=60¡ã£¬Çó½ÇB£»Çë¸ù¾Ý¸ÃÌâµÄ½â´ð¹éÄÉÅжϽâÈý½ÇÐεÄÒ»¸ö½â¡¢Á½¸ö½âµÄÒÀ¾Ý£»
£¨2£©A£¬B£¬CµÄ¶Ô±ß·Ö±ðÊÇa£¬b£¬c£¬ÒÑÖª3acosA=ccosB+bcosC£¬ÇóAµÄÖµ£»
£¨3£©ÔÚ¡÷ABCÖУ¬ÄÚ½ÇA£¬B£¬CµÄ¶Ô±ß·Ö±ðÊÇa£¬b£¬c£¬Èôa2-b2=$\sqrt{3}$bc£¬$sinC=2\sqrt{3}sinB$£¬Çó½ÇA£»
£¨4£©ÔÚÈñ½Ç¡÷ABC£¬A£¬B£¬CµÄ¶Ô±ß·Ö±ðÊÇa£¬b£¬c£¬$\frac{b}{a}+\frac{a}{b}=6cosC$£¬Çó$\frac{tanC}{tanA}+\frac{tanC}{tanB}µÄÖµ$£®

·ÖÎö £¨1£©¢ÙÓÉÕýÏÒ¶¨Àí¿ÉµÃ£º$\frac{\sqrt{3}}{sinA}=\frac{\sqrt{2}}{sin4{5}^{¡ã}}$£¬a£¾b£¬AΪÈñ½Ç»ò¶Û½Ç£¬Á½½â£®
¢Ú$BC=\sqrt{3}£¬AC=\sqrt{2}$£¬A=60¡ã£¬ÓÉÕýÏÒ¶¨Àí¿ÉµÃ£º$\frac{\sqrt{3}}{sin6{0}^{¡ã}}$=$\frac{\sqrt{2}}{sinB}$£¬ÓÉa£¾b£¬BΪÈñ½Ç£®
×ÛÉϿɵãºÒÑÖªa£¾b£¬AΪÈñ½Ç£¬ÔòBΪÈñ½Ç£®ÒÑÖªa£¾b£¬BΪÈñ½Ç£¬¶ÔbÓëasinB·ÖÀàÌÖÂÛ¼´¿ÉµÃ³ö£®
£¨2£©ÓÉÕýÏÒ¶¨Àí¿ÉµÃ£º3acosA=ccosB+bcosC£¬ÓÉÕýÏÒ¶¨Àí¿ÉµÃ£º3sinAcosA=sinCcosB+sinBcosC=sinA£¬¼´¿ÉµÃ³ö£®
£¨3£©ÓÉ$sinC=2\sqrt{3}sinB$£¬ÀûÓÃÕýÏÒ¶¨Àí¿ÉµÃ£ºc=2$\sqrt{3}$b£¬ÓÖa2-b2=$\sqrt{3}$bc£¬¿ÉµÃa=$\sqrt{7}$b£®ÔÙÀûÓÃÓàÏÒ¶¨Àí¼´¿ÉµÃ³ö£®
£¨4£©ÓÉ$\frac{b}{a}+\frac{a}{b}=6cosC$£¬¿ÉµÃa2+b2=6abcosC£¬a2+b2=$\frac{3}{2}{c}^{2}$£¬±äÐÎ$\frac{tanC}{tanA}$+$\frac{tanC}{tanB}$=$\frac{sinCsinC}{cosCsinAsinB}$=$\frac{{c}^{2}}{abcosC}$£¬´úÈë¼´¿ÉµÃ³ö£®

½â´ð ½â£º£¨1£©¢ÙÓÉÕýÏÒ¶¨Àí¿ÉµÃ£º$\frac{\sqrt{3}}{sinA}=\frac{\sqrt{2}}{sin4{5}^{¡ã}}$£¬¿ÉµÃsinA=$\frac{\sqrt{3}}{2}$£¬¡ßa£¾b£¬¡àA=60¡ã»ò120¡ã£®
¢Ú$BC=\sqrt{3}£¬AC=\sqrt{2}$£¬A=60¡ã£¬ÓÉÕýÏÒ¶¨Àí¿ÉµÃ£º$\frac{\sqrt{3}}{sin6{0}^{¡ã}}$=$\frac{\sqrt{2}}{sinB}$£¬½âµÃsinB=$\frac{\sqrt{2}}{2}$£¬¡ßa£¾b£¬¡àB=45¡ã£®
×ÛÉϿɵãºÒÑÖªa£¾b£¬AΪÈñ½Ç£¬ÔòBΪÈñ½Ç£®
ÒÑÖªa£¾b£¬BΪÈñ½Ç£¬b£¼asinBʱ£¬Î޽⣻b=asinBʱ£¬A=90¡ã£»asinB£¼b£¼aʱ£¬AÓÐÁ½½â£®
£¨2£©ÓÉÕýÏÒ¶¨Àí¿ÉµÃ£º3acosA=ccosB+bcosC£¬ÓÉÕýÏÒ¶¨Àí¿ÉµÃ£º3sinAcosA=sinCcosB+sinBcosC=sin£¨B+C£©=sinA£¬
¡ßsinA¡Ù0£¬¡àcosA=$\frac{1}{3}$£¬¡àA=arccos$\frac{1}{3}$£®
£¨3£©¡ß$sinC=2\sqrt{3}sinB$£¬ÓÉÕýÏÒ¶¨Àí¿ÉµÃ£ºc=2$\sqrt{3}$b£¬ÓÖa2-b2=$\sqrt{3}$bc£¬¡àa2=b2+6b2=7b2£¬¼´a=$\sqrt{7}$b£®
¡àcosA=$\frac{{b}^{2}+{c}^{2}-{a}^{2}}{2bc}$=$\frac{{b}^{2}+12{b}^{2}-7{b}^{2}}{2b¡Á2\sqrt{3}b}$=$\frac{\sqrt{3}}{2}$£¬ÓÖA¡Ê£¨0£¬¦Ð£©£¬¡àA=$\frac{¦Ð}{6}$£®
£¨4£©¡ß$\frac{b}{a}+\frac{a}{b}=6cosC$£¬¡àa2+b2=6abcosC£¬b2+a2=6ab¡Á$\frac{{a}^{2}+{b}^{2}-{c}^{2}}{2ab}$£¬¿ÉµÃa2+b2=$\frac{3}{2}{c}^{2}$£¬
¡à$\frac{tanC}{tanA}$+$\frac{tanC}{tanB}$=tanC•$\frac{cosAsinB+cosBsinA}{sinAsinA}$=$\frac{sinC•sin£¨A+B£©}{cosCsinAsinB}$=$\frac{sinCsinC}{cosCsinAsinB}$=$\frac{{c}^{2}}{abcosC}$=$\frac{\frac{2£¨{a}^{2}+{b}^{2}£©}{3}}{\frac{{a}^{2}+{b}^{2}}{6}}$=4£®

µãÆÀ ±¾Ì⿼²éÁËÕýÏÒ¶¨ÀíÓàÏÒ¶¨Àí¡¢Í¬½ÇÈý½Çº¯Êý»ù±¾¹ØÏµÊ½¡¢ºÍ²î¹«Ê½£¬¿¼²éÁË·ÖÀàÌÖÂÛ·½·¨¡¢ÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®ÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄÀëÐÄÂÊΪ$\frac{\sqrt{2}}{2}$£¬ÇÒ¹ýµãP£¨$\sqrt{2}$£¬1£©£®
£¨1£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨2£©ÈôA1£¬A2·Ö±ðÊÇÍÖÔ²µÄ×ó¡¢ÓÒ¶¥µã£¬¶¯µãMÂú×ãMA2¡ÍA1A2£¬ÇÒMA1½»ÍÖÔ²CÓÚ²»Í¬ÓÚA1µÄµãR£¬ÇóÖ¤£º$\overrightarrow{OR}$•$\overrightarrow{OM}$Ϊ¶¨Öµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

16£®ÔÚ¡÷ABCÖУ¬Èô$\overrightarrow{AB}•\overrightarrow{AC}=0$£¬Ôò¡÷ABCµÄÐÎ×´ÊÇ£¨¡¡¡¡£©
A£®Ö±½ÇÈý½ÇÐÎB£®µÈÑüÈý½ÇÐÎC£®Èñ½ÇÈý½ÇÐÎD£®¶Û½ÇÈý½ÇÐÎ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®Èçͼ£¬ÔÚÈýÀâÖùABC-A1B1C1ÖУ¬µ×Ãæ¡÷ABCÊDZ߳¤Îª2µÄµÈ±ßÈý½ÇÐΣ¬¹ýA1C×÷Æ½ÃæA1CDƽÐÐÓÚBC1£¬½»ABÓÚDµã£¬
£¨¢ñ£©ÇóÖ¤£ºCD¡ÍAB
£¨¢ò£©ÈôËıßÐÎBCC1B1ÊÇÕý·½ÐΣ¬ÇÒA1D=5$\sqrt{5}$£¬ÇóÖ±ÏßA1DÓëÆ½ÃæCBB1C1Ëù³É½ÇµÄÕýÏÒÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®ÒÑÖªº¯Êýf£¨x£©=x3-x£¬Èç¹û¹ýµã£¨2£¬m£©¿É×÷ÇúÏßy=f£¨x£©µÄÈýÌõÇÐÏߣ¬ÇómµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

10£®Éèa=1.50.3£¬b=log76£¬c=tan300¡ã£¬±È½Ïa£¬b£¬cµÄ´óС¹ØÏµc£¼b£¼a£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

17£®ÒÑÖª¸´Êýz1=cos¦È-i£¬z2=sin¦È+i£¬Ôòz1z2µÄÐ鲿ºÍʵ²¿µÄ×î´óÖµ£¨¡¡¡¡£©
A£®$\sqrt{2}ºÍ1$B£®$\sqrt{3}ºÍ\frac{3}{2}$C£®$\sqrt{2}ºÍ\frac{3}{2}$D£®2ºÍ1

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®ÒÑÖª{an}ÊǵȲîÊýÁУ¬ÆäÖÐa1=25£¬a4=16£®
£¨1£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨2£©µ±nΪºÎֵʱ£¬ÊýÁÐ{an}µÄǰnÏîºÍSnÈ¡µÃ×î´óÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®ÏÖÓÐ7ÃûÊÀ²©»áÖ¾Ô¸Õߣ¬ÆäÖÐÖ¾Ô¸ÕßA1¡¢A2¡¢A3ͨÏþÈÕÓB1¡¢B2ͨÏþ¶íÓC1¡¢C2ͨÏþº«Ó´ÓÖÐÑ¡³öͨÏþÈÕÓï¡¢¶íÓïºÍº«ÓïµÄÖ¾Ô¸Õ߸÷1Ãû£¬×é³ÉÒ»¸öС×飮ÒÑ֪ÿ¸öÖ¾Ô¸Õß±»Ñ¡ÖеĻú»á¾ùµÈ£®
£¨¢ñ£©ÇóA1±»Ñ¡ÖеĸÅÂÊ£»
£¨¢ò£©ÇóB1ºÍC1ÖÁÉÙÓÐÒ»È˱»Ñ¡ÖеĸÅÂÊ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸