·ÖÎö £¨1£©¢ÙÓÉÕýÏÒ¶¨Àí¿ÉµÃ£º$\frac{\sqrt{3}}{sinA}=\frac{\sqrt{2}}{sin4{5}^{¡ã}}$£¬a£¾b£¬AΪÈñ½Ç»ò¶Û½Ç£¬Á½½â£®
¢Ú$BC=\sqrt{3}£¬AC=\sqrt{2}$£¬A=60¡ã£¬ÓÉÕýÏÒ¶¨Àí¿ÉµÃ£º$\frac{\sqrt{3}}{sin6{0}^{¡ã}}$=$\frac{\sqrt{2}}{sinB}$£¬ÓÉa£¾b£¬BΪÈñ½Ç£®
×ÛÉϿɵãºÒÑÖªa£¾b£¬AΪÈñ½Ç£¬ÔòBΪÈñ½Ç£®ÒÑÖªa£¾b£¬BΪÈñ½Ç£¬¶ÔbÓëasinB·ÖÀàÌÖÂÛ¼´¿ÉµÃ³ö£®
£¨2£©ÓÉÕýÏÒ¶¨Àí¿ÉµÃ£º3acosA=ccosB+bcosC£¬ÓÉÕýÏÒ¶¨Àí¿ÉµÃ£º3sinAcosA=sinCcosB+sinBcosC=sinA£¬¼´¿ÉµÃ³ö£®
£¨3£©ÓÉ$sinC=2\sqrt{3}sinB$£¬ÀûÓÃÕýÏÒ¶¨Àí¿ÉµÃ£ºc=2$\sqrt{3}$b£¬ÓÖa2-b2=$\sqrt{3}$bc£¬¿ÉµÃa=$\sqrt{7}$b£®ÔÙÀûÓÃÓàÏÒ¶¨Àí¼´¿ÉµÃ³ö£®
£¨4£©ÓÉ$\frac{b}{a}+\frac{a}{b}=6cosC$£¬¿ÉµÃa2+b2=6abcosC£¬a2+b2=$\frac{3}{2}{c}^{2}$£¬±äÐÎ$\frac{tanC}{tanA}$+$\frac{tanC}{tanB}$=$\frac{sinCsinC}{cosCsinAsinB}$=$\frac{{c}^{2}}{abcosC}$£¬´úÈë¼´¿ÉµÃ³ö£®
½â´ð ½â£º£¨1£©¢ÙÓÉÕýÏÒ¶¨Àí¿ÉµÃ£º$\frac{\sqrt{3}}{sinA}=\frac{\sqrt{2}}{sin4{5}^{¡ã}}$£¬¿ÉµÃsinA=$\frac{\sqrt{3}}{2}$£¬¡ßa£¾b£¬¡àA=60¡ã»ò120¡ã£®
¢Ú$BC=\sqrt{3}£¬AC=\sqrt{2}$£¬A=60¡ã£¬ÓÉÕýÏÒ¶¨Àí¿ÉµÃ£º$\frac{\sqrt{3}}{sin6{0}^{¡ã}}$=$\frac{\sqrt{2}}{sinB}$£¬½âµÃsinB=$\frac{\sqrt{2}}{2}$£¬¡ßa£¾b£¬¡àB=45¡ã£®
×ÛÉϿɵãºÒÑÖªa£¾b£¬AΪÈñ½Ç£¬ÔòBΪÈñ½Ç£®
ÒÑÖªa£¾b£¬BΪÈñ½Ç£¬b£¼asinBʱ£¬Î޽⣻b=asinBʱ£¬A=90¡ã£»asinB£¼b£¼aʱ£¬AÓÐÁ½½â£®
£¨2£©ÓÉÕýÏÒ¶¨Àí¿ÉµÃ£º3acosA=ccosB+bcosC£¬ÓÉÕýÏÒ¶¨Àí¿ÉµÃ£º3sinAcosA=sinCcosB+sinBcosC=sin£¨B+C£©=sinA£¬
¡ßsinA¡Ù0£¬¡àcosA=$\frac{1}{3}$£¬¡àA=arccos$\frac{1}{3}$£®
£¨3£©¡ß$sinC=2\sqrt{3}sinB$£¬ÓÉÕýÏÒ¶¨Àí¿ÉµÃ£ºc=2$\sqrt{3}$b£¬ÓÖa2-b2=$\sqrt{3}$bc£¬¡àa2=b2+6b2=7b2£¬¼´a=$\sqrt{7}$b£®
¡àcosA=$\frac{{b}^{2}+{c}^{2}-{a}^{2}}{2bc}$=$\frac{{b}^{2}+12{b}^{2}-7{b}^{2}}{2b¡Á2\sqrt{3}b}$=$\frac{\sqrt{3}}{2}$£¬ÓÖA¡Ê£¨0£¬¦Ð£©£¬¡àA=$\frac{¦Ð}{6}$£®
£¨4£©¡ß$\frac{b}{a}+\frac{a}{b}=6cosC$£¬¡àa2+b2=6abcosC£¬b2+a2=6ab¡Á$\frac{{a}^{2}+{b}^{2}-{c}^{2}}{2ab}$£¬¿ÉµÃa2+b2=$\frac{3}{2}{c}^{2}$£¬
¡à$\frac{tanC}{tanA}$+$\frac{tanC}{tanB}$=tanC•$\frac{cosAsinB+cosBsinA}{sinAsinA}$=$\frac{sinC•sin£¨A+B£©}{cosCsinAsinB}$=$\frac{sinCsinC}{cosCsinAsinB}$=$\frac{{c}^{2}}{abcosC}$=$\frac{\frac{2£¨{a}^{2}+{b}^{2}£©}{3}}{\frac{{a}^{2}+{b}^{2}}{6}}$=4£®
µãÆÀ ±¾Ì⿼²éÁËÕýÏÒ¶¨ÀíÓàÏÒ¶¨Àí¡¢Í¬½ÇÈý½Çº¯Êý»ù±¾¹ØÏµÊ½¡¢ºÍ²î¹«Ê½£¬¿¼²éÁË·ÖÀàÌÖÂÛ·½·¨¡¢ÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | Ö±½ÇÈý½ÇÐÎ | B£® | µÈÑüÈý½ÇÐÎ | C£® | Èñ½ÇÈý½ÇÐÎ | D£® | ¶Û½ÇÈý½ÇÐÎ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | $\sqrt{2}ºÍ1$ | B£® | $\sqrt{3}ºÍ\frac{3}{2}$ | C£® | $\sqrt{2}ºÍ\frac{3}{2}$ | D£® | 2ºÍ1 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com