精英家教网 > 高中数学 > 题目详情
10.设a=1.50.3,b=log76,c=tan300°,比较a,b,c的大小关系c<b<a.

分析 根据对数函数、指数函数以及三角函数的性质判断大小即可.

解答 解:∵a=1.50.3>1,0<b=log76<1,c=tan300°=-tan60°<0,
∴c<b<a,
故答案为:c<b<a.

点评 本题考查了对数函数、指数函数以及三角函数的性质,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.已知数列{an}的前n项和为Sn,a1=1,an≠0,anan+1=4Sn-1.
(Ⅰ)求{an}的通项公式;
(Ⅱ)证明:$\frac{1}{S_1}$+$\frac{1}{S_2}$+…+$\frac{1}{S_n}$<2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.幂函数f(x)=f(x)的图象过点(2,$\frac{\sqrt{2}}{2}$),则f(x)为(  )
A.y=x${\;}^{\frac{1}{2}}$B.y=$\frac{1}{{x}^{2}}$C.y=x${\;}^{-\frac{1}{2}}$D.y=$\sqrt{2}$x-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.某中学有甲乙两个文科班进行数学考试,按照大于或等于120分为优秀,120分以下为非优秀统计成绩后,得到如下列联表:
优秀非优秀合计
20525
101525
合计302050
(1)用分层抽样的方法在优秀的学生中抽6人,其中甲班抽多少人?
(2)计算出统计量k2,能否有95%的把握认为“成绩与班级有关”?
下面的临界值表代参考:
P(k2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
(参考公式k2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$其中n=a+b+c+d.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.(1)在△ABC中,已知边$BC=\sqrt{3},AC=\sqrt{2}$,已知角B=45°,求角A;
若该题中的条件改为边$BC=\sqrt{3},AC=\sqrt{2}$,已知角A=60°,求角B;请根据该题的解答归纳判断解三角形的一个解、两个解的依据;
(2)A,B,C的对边分别是a,b,c,已知3acosA=ccosB+bcosC,求A的值;
(3)在△ABC中,内角A,B,C的对边分别是a,b,c,若a2-b2=$\sqrt{3}$bc,$sinC=2\sqrt{3}sinB$,求角A;
(4)在锐角△ABC,A,B,C的对边分别是a,b,c,$\frac{b}{a}+\frac{a}{b}=6cosC$,求$\frac{tanC}{tanA}+\frac{tanC}{tanB}的值$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.函数y=x-ex的增区间为(  )
A.(1,+∞)B.(-∞,0)C.(0,+∞)D.(-∞,1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知f′(x)为y=f(x)的导函数,且f′(x0)=a,则$\lim_{△x→0}\frac{{f({x_0}-△x)-f({x_0})}}{△x}$=(  )
A.aB.-aC.±aD.无法确定

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.在四面体S-ABC中,SA⊥平面ABC,△ABC是边长为3的正三角形,SA=2,则该四面体的外接球的表面积为(  )
A.B.12πC.16πD.32π

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.在凸四边形ABCD中,角A=C=60°,AD=BC=2,且AB≠CD,则四边形ABCD的面积为$\sqrt{3}$.

查看答案和解析>>

同步练习册答案