精英家教网 > 高中数学 > 题目详情
(2013•临沂二模)如图,已知矩形ABCD中,AB=2AD=2,O为CD的中点,沿AO将三角形AOD折起,使DB=
3

(Ⅰ)求证:平面AOD⊥平面ABCO;
(Ⅱ)求直线BC与平面ABD所成角的正弦值.
分析:(1)要证明面面垂直,常用其判定定理来证明,即在其中一个平面内找到一条直线与另一平面垂直;
(2)空间中求线面角,常用空间向量来解决,即建立空间直角坐标系后,求直线的方向向量与平面的法向量,再求其夹角的余弦即是所求.
解答:(Ⅰ)证明:∵在矩形ABCD中,AB=2AD=2,O为CD中点,
∴△AOD,△BOC为等腰直角三角形,
∴∠AOB=90°,即OB⊥OA.…(1分)
取AO中点H,连结DH,BH,则OH=DH=
2
2

在Rt△BOH中,BH2=BO2+OH2=
5
2

在△BHD中,DH2+BH2=(
2
2
)2+
5
2
=3
,又DB2=3,
∴DH2+BH2=DB2,∴DH⊥BH.…(2分)
又DH⊥OA,OA∩BH=H …(3分)
∴DH⊥面ABCO,…(4分)
而DH∈平面AOD,…(5分)
∴平面AOD⊥平面ABCO.…(6分)
(Ⅱ)解:分别以直线OA,OB为x轴和y轴,O为坐标原点,建立如图所示的空间直角坐标系,

B(0,
2
,0)
A(
2
,0,0)
D(
2
2
,0,
2
2
)
C(-
2
2
2
2
,0)

AB
=(-
2
2
,0),
AD
=(-
2
2
,0,
2
2
),
BC
=(-
2
2
,-
2
2
,0)
.…(7分)
设平面ABD的一个法向量为n=(x,y,z),
n•
AB
=0
n•
AD
=0
-
2
x+
2
y=0
-
2
2
x+
2
2
z=0

即x=y,x=z,令x=1,则y=z-1,
取n=(1,1,1).…(9分)
设α为直线BC与平面ABD所成的角,
sinα=
|
BC
•n|
|
BC
|•|n|
=
2
3
=
6
3
.…(11分)
即直线BC与平面ABD所成角的正弦值为
6
3
.…(12分)
点评:本题考查的内容是立体几何,主要考查面面垂直的证明以及求线面角中的向量方法,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•临沂二模)已知函数f(x)=elnx,g(x)=lnx-x-1,h(x)=
1
2
x2

(Ⅰ)求函数g(x)的极大值.
(Ⅱ)求证:存在x0∈(1,+∞),使g(x0)=g(
1
2
)

(Ⅲ)对于函数f(x)与h(x)定义域内的任意实数x,若存在常数k,b,使得f(x)≤kx+b和h(x)≥kx+b都成立,则称直线y=kx+b为函数f(x)与h(x)的分界线.试探究函数f(x)与h(x)是否存在“分界线”?若存在,请给予证明,并求出k,b的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•临沂二模)函数y=esinx(-π≤x≤π)的大致图象为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•临沂二模)已知定义在R上的函数y=f(x)对任意的x都满足f(x+1)=-f(x),当-1≤x<1时,f(x)=x3,若函数g(x)=f(x)-loga|x|至少6个零点,则a取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•临沂二模)已知x∈R,ω>0,
u
=(1,sin(ωx+
π
2
)),
v
=(cos2ωx,
3
sinωx)函数f(x)=
u
v
-
1
2
的最小正周期为π.
(Ⅰ)求ω的值;
(Ⅱ)求函数f(x)在区间[0,
π
2
]上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•临沂二模)某班共有52人,现根据学生的学号,用系统抽样的方法,抽取一个容量为4的样本,已知3号、29号、42号同学在样本中,那么样本中还有一个同学的学号是(  )

查看答案和解析>>

同步练习册答案