精英家教网 > 高中数学 > 题目详情
16.把35化为二进制数为(  )
A.100111B.110110C.100011D.100110

分析 利用“除k取余法”是将十进制数除以2,然后将商继续除以2,直到商为0,然后将依次所得的余数倒序排列即可得到答案.

解答 解:
35÷2=17…1
17÷2=8…1
8÷2=4…0
4÷2=2…0
2÷2=1…0
1÷2=0…1
故35(10)=100011(2)
故选:C.

点评 本题考查的知识点是十进制与其它进制之间的转化,其中熟练掌握“除k取余法”的方法步骤是解答本题的关键,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.求适合下列条件的圆锥曲线的方程
(1)焦点坐标为$({\sqrt{3},0}),({-\sqrt{3},0})$,准线方程为$x=±3\sqrt{3}$的椭圆;
(2)焦点是$(±\sqrt{26},0)$,渐近线方程是$y=±\frac{3}{2}x$的双曲线.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知函数$f(x)=\left\{{\begin{array}{l}{4x+1,}&{x<1}\\{{x^2}-6x+10,}&{x≥1}\end{array}}\right.$,关于a的不等式f(a)-ta+2t-2>0的解集是(a1,a2)∪(a3,+∞),若a1a2a3<0,则实数t的取值范围是(  )
A.(-3,4)B.$(\frac{1}{2},4)$C.$(-2,\frac{1}{2})$D.(-3,-2)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知函数y=f(x)是定义在R上的偶函数,对于x∈R都有f(x+4)=f(x)+f(2)成立,且f(-4)=-2,当x1,x2∈[0,2],且x1≠x2时,都有(x1-x2)[f(x1)-f(x2)]>0,则下列命题错误的是(  )
A.f(2016)=-2B.函数y=f(x)的一条对称轴为x=-6
C.函数y=f(x)在[-8,-6]上为减函数D.函数y=f(x)在[-9,9]上有4个根

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{2}}{2}$,左、右焦点分别为F1,F2,四个顶点围成的四边形面积为4$\sqrt{2}$.
(1)求椭圆的标准方程;
(2)设O为坐标原点,过点P(0,1)的动直线与椭圆交于A,B两点,求证:$\overrightarrow{OA}$•$\overrightarrow{OB}$+$\overrightarrow{PA}$•$\overrightarrow{PB}$为定值,并求出这个定值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.在直角坐标系xOy中,一条直线过抛物线y2=4x的焦点F且与该抛物线相交于A,B两点,其中点A在x轴上方,若该直线的倾斜角为60°,则△OAF的面积为(  )
A.$\frac{1}{2}$B.2C.$\sqrt{3}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.设集合A={x|-1≤x<3},B={x|2x-4≥x-2},求A∩B;A∪B.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若函数f(x)=x•ex-a有且只有一个零点,则实数a的取值集合为{$-\frac{1}{e}$}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知等腰△ABC中,AB=AC,AB所在直线方程为2x+y-4=0,BC边上的中线AD所在直线方程为x-y+1=0,D(4,5).
(Ⅰ)求BC边所在直线方程;
(Ⅱ)求B点坐标及AC边所在直线方程.

查看答案和解析>>

同步练习册答案