| A. | $\frac{1}{2}$ | B. | 2 | C. | $\sqrt{3}$ | D. | $\frac{\sqrt{3}}{2}$ |
分析 确定直线l的方程,代入抛物线方程,确定A的坐标,从而可求△OAF的面积.
解答 解:抛物线y2=4x的焦点F的坐标为(1,0),
∵直线l过F,倾斜角为60°,
∴直线l的方程为:y=$\sqrt{3}$(x-1),即x=$\frac{\sqrt{3}}{3}$y+1,
代入抛物线方程,化简可得y2-$\frac{4\sqrt{3}}{3}$y-4=0,
∴y=2$\sqrt{3}$,或y=-$\frac{2\sqrt{3}}{3}$,
∵A在x轴上方,
∴△OAF的面积为$\frac{1}{2}×1×2\sqrt{3}$=$\sqrt{3}$,
故选:C.
点评 本题考查抛物线的性质,考查直线与抛物线的位置关系,确定A的坐标是解题的关键.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\{(x,y)\left|{{x^2}+{y^2}=4}\right.,y=\sqrt{x-1}\}$ | B. | [0,2] | ||
| C. | [-2,2] | D. | [0,+∞) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com