精英家教网 > 高中数学 > 题目详情
11.已知集合A={x∈R|x2+y2=4},B={y∈R|y=$\sqrt{x-1}}$},则A∩B=(  )
A.$\{(x,y)\left|{{x^2}+{y^2}=4}\right.,y=\sqrt{x-1}\}$B.[0,2]
C.[-2,2]D.[0,+∞)

分析 求出A中x的范围确定出A,求出B中y的范围确定出B,找出A与B的交集即可.

解答 解:由A中x2+y2=4,得到-2≤x≤2,即A=[-2,2],
由B中y=$\sqrt{x-1}$≥0,即B=[0,+∞),
∴A∩B=[0,2],
故选:B.

点评 此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.在直角坐标系xOy中,一条直线过抛物线y2=4x的焦点F且与该抛物线相交于A,B两点,其中点A在x轴上方,若该直线的倾斜角为60°,则△OAF的面积为(  )
A.$\frac{1}{2}$B.2C.$\sqrt{3}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若f(x+1)=2x+1,则f(x)=(  )
A.f(x)=2x-1B.f(x)=2x+1C.f(x)=2x+2D.f(x)=2x-2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.在一个数列中,如果对于所有的n∈N*,都有anan+1an+2=k(k为常数),那么这个数列叫做“等积数列”,k叫做这个数列的“公积”.已知数列{an}是等积数列,且a1=1,a2=2,公积为8,则数列{an}的前41项的和为(  )
A.91B.92C.94D.96

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知等腰△ABC中,AB=AC,AB所在直线方程为2x+y-4=0,BC边上的中线AD所在直线方程为x-y+1=0,D(4,5).
(Ⅰ)求BC边所在直线方程;
(Ⅱ)求B点坐标及AC边所在直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知函数f(x)满足f(x+6)+f(x)=0,x∈R,函数y=f(x-1)的图象关于点(1,0)对称,f(1)=-2,则f(2021)=(  )
A.2B.-2C.1D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设锐角三角形ABC的内角A,B,C的对边分别为a,b,c,a=2bsinA.
(Ⅰ)若a=3$\sqrt{3}$,c=5,求b;
(Ⅱ)求cosA+sinC的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知等差数列{an},公差d≠0,满足:a1,a2,a4成等比数列,且a3+a5=8.数列{bn}满足b1=1,2bn-bn-1=0(n≥2,n∈N*).设cn=an•bn
(1)求数列{an}的通项公式;
(2)求数列{cn}的前n项的和Tn
(3)设整数m、M使得m<Tn<M对?n∈N*恒成立,求M-m的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知F1、F2为椭圆$\frac{{x}^{2}}{36}$+$\frac{{y}^{2}}{20}$=1的左、右两个焦点,P为椭圆上一点,则△PF1F2的周长为(  )
A.24B.20C.16D.10

查看答案和解析>>

同步练习册答案