精英家教网 > 高中数学 > 题目详情
19.在一个数列中,如果对于所有的n∈N*,都有anan+1an+2=k(k为常数),那么这个数列叫做“等积数列”,k叫做这个数列的“公积”.已知数列{an}是等积数列,且a1=1,a2=2,公积为8,则数列{an}的前41项的和为(  )
A.91B.92C.94D.96

分析 根据“等积数列”的概念,a1=1,a2=2,公积为8,可求得a3,a4,…a41,利用数列的求和公式即可求得答案.

解答 解:依题意,数列{an}是等积数列,且a1=1,a2=2,公积为8,
∴a1•a2•a3=8,即1×2a3=8,
∴a3=4.
同理可求a4=1,a5=2,a6=4,…
∴{an}是以3为周期的数列,
∴a1=a4=a7=a10=a13=a16=a19=a22=a25=a28=a31=a34=a37=a40=1,
a2=a5=a8=a11=a14=a17=a20=a23=a26=a29=a32=a35=a38=a41=2,
a3=a6=a9=a12=a15=a18=a21=a24=a27=a30=a33=a36=a39=4.
∴a1+a2+a3+…+a41=(1+2+4)×14-4=94.
故选:C.

点评 本题考查数列的求和,求得{an}是以3为周期的数列是关键,考查分析观察与运算能力,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.已知sin(-$\frac{7π}{2}$+α)=$\frac{1}{4}$,则cos2α=-$\frac{7}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.证明:
(1)$\sqrt{a}$-$\sqrt{a-1}$<$\sqrt{a-2}$-$\sqrt{a-3}$(a≥3);
(2)对正数a,b,若a+b=2,则$\frac{1+b}{a}$,$\frac{1+a}{b}$中至多有一个小于2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知f(x)=x4+e|x|,则满足不等式2f(lnt)-f(ln$\frac{1}{t}$)≤f(2)的实数t的集合是[e-2,e2].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.如果等差数列{an}中,a3=3,那么数列{an}前5项的和为(  )
A.15B.20C.25D.30

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知P是等腰直角△ABC的斜边BC上的动点,|$\overrightarrow{AB}$|=2,则$\overrightarrow{AP}$•($\overrightarrow{AB}$+$\overrightarrow{AC}$)=4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知集合A={x∈R|x2+y2=4},B={y∈R|y=$\sqrt{x-1}}$},则A∩B=(  )
A.$\{(x,y)\left|{{x^2}+{y^2}=4}\right.,y=\sqrt{x-1}\}$B.[0,2]
C.[-2,2]D.[0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.△ABC中,∠BAC=45°,AD⊥BC于D,BD=2,DC=3,则AD的长为6.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设函数f(x)=|x-2|+|x+3|,x∈R.
(1)求不等式f(x)≤x+5的解集;
(2)如果关于x的不等式f(x)≥a2+4a在R上恒成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案