精英家教网 > 高中数学 > 题目详情
8.△ABC中,∠BAC=45°,AD⊥BC于D,BD=2,DC=3,则AD的长为6.

分析 过B作BE⊥AC,垂足为E交AD于F,由题意可知:BE=AE,∠EAF=∠EBC,由$\left\{\begin{array}{l}{∠EAF=∠EBC}\\{BE=AE}\\{∠FEA=∠CEB=90°}\end{array}\right.$,△AFE≌△BCE,求得AF=BC=BD+DC=5,∠FBD=∠DAC,由∠BDF=∠ADC=90°,可知△BDF∽△ADC,可得FD:DC=BD:AD,代入即可求得FD,即可求得AD的长.

解答 解:如图,过B作BE⊥AC,垂足为E交AD于F,
∵∠BAC=45°
∴BE=AE,

∵∠C+∠EBC=90°,∠C+∠EAF=90°,
∴∠EAF=∠EBC,
在△AFE与△BCE中,
由$\left\{\begin{array}{l}{∠EAF=∠EBC}\\{BE=AE}\\{∠FEA=∠CEB=90°}\end{array}\right.$,
∴△AFE≌△BCE,
∴AF=BC=BD+DC=5,∠FBD=∠DAC,
又∵∠BDF=∠ADC=90°,
∴△BDF∽△ADC,
∴FD:DC=BD:AD,
设FD长为x,则x:3=2:(x+5),
解得:x=1,即FD=1,
∴AD=AF+FD=5+1=6,
故答案为:6.

点评 本题考查三角形全等及相似的性质,考查计算能力,数形结合思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.设集合A={x|-1≤x<3},B={x|2x-4≥x-2},求A∩B;∁R(A∩B).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.在一个数列中,如果对于所有的n∈N*,都有anan+1an+2=k(k为常数),那么这个数列叫做“等积数列”,k叫做这个数列的“公积”.已知数列{an}是等积数列,且a1=1,a2=2,公积为8,则数列{an}的前41项的和为(  )
A.91B.92C.94D.96

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知函数f(x)满足f(x+6)+f(x)=0,x∈R,函数y=f(x-1)的图象关于点(1,0)对称,f(1)=-2,则f(2021)=(  )
A.2B.-2C.1D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设锐角三角形ABC的内角A,B,C的对边分别为a,b,c,a=2bsinA.
(Ⅰ)若a=3$\sqrt{3}$,c=5,求b;
(Ⅱ)求cosA+sinC的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.$\frac{-3+i}{i-1}$的虚部等于(  )
A.iB.1C.2D.$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知等差数列{an},公差d≠0,满足:a1,a2,a4成等比数列,且a3+a5=8.数列{bn}满足b1=1,2bn-bn-1=0(n≥2,n∈N*).设cn=an•bn
(1)求数列{an}的通项公式;
(2)求数列{cn}的前n项的和Tn
(3)设整数m、M使得m<Tn<M对?n∈N*恒成立,求M-m的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.下列推断错误的个数是(  )
①命题“若x2-3x+2=0,则x=1”的逆否命题为“若x≠1则x2-3x+2≠0”
②命题“若x2=1,则x=1”的否命题为:若“x2=1则x≠1”
③“x<1”是“x2-3x+2>0”的充分不必要条件
④命题“?x∈R,使得x2+x+1<0”的否定是:“?x∈R,均有x2+x+1<0”.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知指数函数y=g(x)的图象过点(2,4),定义域为R,f(x)=$\frac{-g(x)+n}{2g(x)+m}$是奇函数.
(1)试确定函数y=g(x)的解析式;
(2)求实数m,n的值;
(3)若对任意的t∈R,不等式f(t2-2t)+f(2t2-k)<0恒成立,求实数k的取值范围.

查看答案和解析>>

同步练习册答案