分析 (1)根据等差数列的通项公式和题中的关系,建立首项a1与公差d的方程组,解之得a1=1,d=2,即可得到数列{an}的通项公式;
(2)由等比数列的定义求得bn;结合(1)的结果求得{cn}的通项公式.利用错位相减法来求Tn;
(3)利用(2)中Tn的通项公式求得M、m的值;然后求M-m的最小值.
解答 解:(1)由题设a22=a1•a4,即(a1+d)2=a1•(a1+3d),亦即a1d=d2.
又d≠0,故a1=d.
又由a3+a5=8,得a4=4,即a1+3d=4,于是a1=d=1.
an=1+(n-1)=n.
(2)∵2bn-bn-1=0,
∴$\frac{{b}_{n}}{{b}_{n-1}}$=$\frac{1}{2}$,
∴bn=($\frac{1}{2}$)n-1,
∴cn=n•($\frac{1}{2}$)n-1,
∴Tn=1•($\frac{1}{2}$)1-1+2•($\frac{1}{2}$)2-1+3•($\frac{1}{2}$)3-1+…+n•($\frac{1}{2}$)n-1,
∴$\frac{1}{2}$Tn=1•($\frac{1}{2}$)2-1+2•($\frac{1}{2}$)3-1+…+n•($\frac{1}{2}$)n,
∴$\frac{1}{2}$Tn=1+$\frac{1}{2}$+…+($\frac{1}{2}$)n-1-n•($\frac{1}{2}$)n,
Tn=4[1-($\frac{1}{2}$)n]-n•($\frac{1}{2}$)n-1,
=4-4•($\frac{1}{2}$)n-n•($\frac{1}{2}$)n-1,
=4-(2n+4)($\frac{1}{2}$)n;
(3)由(2)可得:Tn<4且Tn>3,
∴Tn+1-Tn=4-(2n+6)($\frac{1}{2}$)n+1-4+(2n+4)($\frac{1}{2}$)n=($\frac{1}{2}$)n(n+1)>0,
∴Tn≥T1=1,
∴当M=4,m=0时,M-m取得最小值4.
点评 本题主要考查了数列通项公式及数列求和的方法,属常规题目,属中档题.解题时要认真审题,注意错位相减法的合理运用.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\{(x,y)\left|{{x^2}+{y^2}=4}\right.,y=\sqrt{x-1}\}$ | B. | [0,2] | ||
| C. | [-2,2] | D. | [0,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [1,4] | B. | [-1,4] | C. | [-1,1]∪[2,4] | D. | [0,1]∪(2,4) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 函数y=sin2a+$\frac{4}{si{n}^{2}a}$的最小值是4 | B. | $\sqrt{6}$+$\sqrt{11}$>$\sqrt{3}$+$\sqrt{14}$ | ||
| C. | 函数y=sina+$\frac{1}{sina}$的最小值是2 | D. | 58>312 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com