精英家教网 > 高中数学 > 题目详情
15.阅读如图程序框图,如果输出的函数值在区间[2,4]内,则输入的实数x的取值范围是(  )
A.[1,4]B.[-1,4]C.[-1,1]∪[2,4]D.[0,1]∪(2,4)

分析 由程序框图得出分段函数,根据函数的值域,求出实数x的取值范围,即可得解.

解答 解:由程序框图可得其功能是计算并输出分段函数:y=$\left\{\begin{array}{l}{{2}^{x}}&{x∈[-2,2]}\\{2}&{x∉[-2,2]}\end{array}\right.$的值,
当x∈[-2,2]时,由2x∈[2,4],可得:x∈[1,2],满足题意;
当x∉[-2,2]时,由x∈[2,4],可得:x∈(2,4],满足题意;
综上,可得:x∈[1,4].
故选:A.

点评 本题考查了程序框图的运行过程的问题,解题时应读懂框图,得出分段函数,从而做出正确解答,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.若函数f(x)=x•ex-a有且只有一个零点,则实数a的取值集合为{$-\frac{1}{e}$}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知等腰△ABC中,AB=AC,AB所在直线方程为2x+y-4=0,BC边上的中线AD所在直线方程为x-y+1=0,D(4,5).
(Ⅰ)求BC边所在直线方程;
(Ⅱ)求B点坐标及AC边所在直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设锐角三角形ABC的内角A,B,C的对边分别为a,b,c,a=2bsinA.
(Ⅰ)若a=3$\sqrt{3}$,c=5,求b;
(Ⅱ)求cosA+sinC的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.p:?x∈R,使3x2-2x+c<0,q:对?x∈R,使f(x)=log2(3x2-2x+c)值域为R,则p是q的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知等差数列{an},公差d≠0,满足:a1,a2,a4成等比数列,且a3+a5=8.数列{bn}满足b1=1,2bn-bn-1=0(n≥2,n∈N*).设cn=an•bn
(1)求数列{an}的通项公式;
(2)求数列{cn}的前n项的和Tn
(3)设整数m、M使得m<Tn<M对?n∈N*恒成立,求M-m的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.下列命题中,正确的个数是(  )
①单位向量都相等;  
②模相等的两个平行向量是相等向量;
③若$\overrightarrow{a}$,$\overrightarrow{b}$满足|$\overrightarrow{a}$|>|$\overrightarrow{b}$|且$\overrightarrow{a}$与$\overrightarrow{b}$同向,则$\overrightarrow{a}$>$\overrightarrow{b}$;
 ④若两个向量相等,则它们的起点和终点分别重合;
⑤若$\overrightarrow{a}$∥$\overrightarrow{b}$,$\overrightarrow{b}$∥$\overrightarrow{c}$,则$\overrightarrow{a}$∥$\overrightarrow{c}$.
A.0个B.1个C.2个D.3个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设复数 $\frac{2-i}{z}$=1+i,则$\overline z$=(  )
A.$\frac{1}{2}+\frac{3}{2}i$B.$\frac{1}{2}-\frac{3}{2}i$C.$\frac{3}{2}+\frac{1}{2}i$D.$\frac{3}{2}-\frac{1}{2}i$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知直线l的倾斜角是直线x-2y=0的倾斜角的2倍,则过原点的直线l的方程为(  )
A.3x-4y=0B.4x-3y=0C.3x-4y-3=0D.4x-3y-4=0

查看答案和解析>>

同步练习册答案