(Ⅰ)证明:当b=0时,f(x)=x3+cx+d,f′(x)=3x2+c.
∴f(0)=d,f′(0)=c.
曲线y=f(x)与其在点(0,f(0))处的切线为y=cx+d.
由
消去y,得x3=0,x=0.
所以曲线y=f(x)与其在点(0,f(0))处的切线只有一个公共点即切点.
(Ⅱ)解:由已知,切点为(1,1).
又f′(x)=3x2+2bx+c,于是
,即
得c=-2b-15,d=b+15.
从而f(x)=x3+bx2-(2b+15)x+b+15,f′(x)=3x2+2bx-2b-15.
依题设,x1+x2=-
,故b=-3.
于是f(x)=x3-3x2-9x+12,f′(x)=3x2-6x-9=3(x+1)(x-3).
当x变化时,f′(x),f(x)的变化如下:
| x | (-∞,-1) | -1 | (-1,3) | 3 | (3,+∞) |
| f′(x) | + | 0 | - | 0 | + |
| f(x) | ↗ | 极大值17 | ↘ | 极小值-15 | ↗ |
由此知,f(x1)+f(x2)=2.
科目:高中数学 来源: 题型:
查看答案和解析>>
科目:高中数学 来源: 题型:
查看答案和解析>>
科目:高中数学 来源:2012-2013学年河北省唐山市高三(上)摸底数学试卷(文科)(解析版) 题型:解答题
查看答案和解析>>
科目:高中数学 来源:2012-2013学年河北省唐山市高三(上)摸底数学试卷(理科)(解析版) 题型:解答题
查看答案和解析>>
科目:高中数学 来源:2012-2013学年河北省唐山市高三(上)摸底数学试卷(文科)(解析版) 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com