精英家教网 > 高中数学 > 题目详情
设全集U=R,集合E={y|y>2},F={y|y=x2-2x,-1<x<2}.
(1)求(?UE)∩F;
(2)若集合G={y|y=log2x,0<x<a},满足G∩F=F,求正实数a的取值范围.
(1)因为y=x2-2x=(x-1)2-1,
所以当-1<x<2时,-1≤y<3,
即F={y|-1≤y<3},
所以?UE={y|y≤2},
所以(?UE)∩F={y|-1≤y≤2}.
(2)因为G∩F=F,所以F⊆G,
又G={y|y=log2x,0<x<a}={y|y<log2a},
所以log2a≥3,解得a≥8.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

6、设全集U=R,集合E={x|x≤-3或x≥2},F={x|-1<x<5},则集合{x|-1<x<2}等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设全集U=R,集合E={y|y>2},F={y|y=x2-2x,-1<x<2}.
(1)求(?UE)∩F;
(2)若集合G={y|y=log2x,0<x<a},满足G∩F=F,求正实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设全集U=R,集合E={y|y>2},F={y|y=x2-2x,-1<x<2}.
(1)求(?UE)∩F;
(2)若集合G={y|y=log2x,0<x<a},满足G∩F=F,求正实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源:2011年高三数学复习(第1章 集合):1.5 集合的概念与运算(解析版) 题型:选择题

设全集U=R,集合E={x|x≤-3或x≥2},F={x|-1<x<5},则集合{x|-1<x<2}等于( )
A.E∩F
B.CUE∩F
C.CUE∪CUF
D.CU(E∪F)

查看答案和解析>>

同步练习册答案