精英家教网 > 高中数学 > 题目详情

正△ABC的边长为4,CD是AB边上的高,E,F分别是AC和BC边的中点,现将△ABC沿CD翻折成直二面角A—DC—B。

(I)试判断直线AB与平面DEF的位置关系,并说明理由;

(II)求二面角E—DF—C的余弦值;

(III)在线段BC上是否存在一点P,使AP⊥DE?证明你的结论。

 

 

 

【答案】

解法一:(Ⅰ)如图:在中,由分别是边的中点,得

平面平面.        ∴平面.   …………4分

(Ⅱ) 是二面角的平面角,,得平面

的中点,连接,则,   ∴平面,过于点,连接,则根据三垂线定理知,∴就是二面角的平面角.

中,,∴.………8分

(Ⅲ)在线段上存在点,使,证明如下:

在线段上取点,使,过与点,连,则平面,于是有,在中,;又∵是正三角形,∴,∴.………13分

法二:(Ⅰ)同解法一.

 

 

(Ⅱ)以点为坐标原点,直线分别为轴,建立空间直角坐标系,则

显然平面的一个法向量为,设平面的一个法向量为,则,即,令得,,所以二面角的余弦值为

(Ⅲ)设,由,得. 又;将代入上式,得,所以在线段上存在点,使

【解析】略

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

正△ABC的边长为4,CD是AB边上的高,E、F分别是AC和BC边的中点,现将△ABC沿CD翻折成直二面角A-DC-B
精英家教网
(Ⅰ)试判断直线AB与平面DEF的位置关系,并说明理由;
(Ⅱ)求二面角E-DF-C的余弦值;
(Ⅲ)在线段BC上是否存在一点P,使AP⊥DE?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

19、如图所示,正△ABC的边长为4,CD是AB边上的高,E、F分别是AC和BC的中点,现将△ABC沿CD翻折成直二面角A-DC-B.
(I)试判断翻折后直线AB与平面DEF的位置关系,并说明理由;
(II)求直线EF与平面ADC所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•株洲模拟)如图,正△ABC的边长为4,CD是AB边上的高,E,F分别是AC和BC边的中点,现将△ABC沿CD翻折成直二面角A-DC-B.

(1)试判断直线AB与平面DEF的位置关系,并说明理由;
(2)求二面角E-DF-C的余弦值;
(3)在线段BC上是否存在一点P,使AP⊥DE?如果存在,求出
BPBC
的值;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:2011年福建师大附中高二第一学期期末数学理卷 题型:解答题

(本小题12分)

正△ABC的边长为4,CD是AB边上的高,E、F分别是AC和BC边的中点,现将△ABC沿CD翻折成直二面角A—DC—B.

(Ⅰ)试判断直线AB与平面DEF的位置关系,并说明理由;

(Ⅱ)求直线BC与平面DEF所成角的余弦值;

(Ⅲ)在线段BC上是否存在一点P,使AP⊥DE?证明你的结论.

 

查看答案和解析>>

同步练习册答案