分析 设A(x1,y1),B(x2,y2),利用平方差法求出直线的斜率,然后求解直线方程.
解答 解:设A(x1,y1),B(x2,y2),依题意设,有x1+x2=4,y1+y2=-2.…(2分).
$\left\{\begin{array}{l}\frac{x_1^2}{16}+\frac{y_1^2}{4}=1\\ \frac{x_2^2}{16}+\frac{y_2^2}{4}=1\end{array}\right.$,两式相减得:$\frac{x_1^2-x_2^2}{16}+\frac{y_1^2-y_2^2}{4}=0$…(2分)
所以直线AB的斜率k=$\frac{{{y_2}-{y_1}}}{{{x_2}-{x_1}}}=-\frac{{{x_1}+{x_2}}}{{4({y_2}+{y_1})}}=\frac{1}{2}$.…(2分)
因此直线AB的方程为y+1=$\frac{1}{2}$(x-2),即x-2y-4=0.…(1分)
点评 本题考查直线与椭圆的位置关系的应用,椭圆的简单性质的应用,平方差法的应用,考查计算能力.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $f(x)=\sqrt{x^2}$,g(x)=x | B. | $f(x)=\sqrt{{x^2}-4},g(x)=\sqrt{x+2}\sqrt{x-2}$ | ||
| C. | $f(x)=x,g(x)=\frac{x^2}{x}$ | D. | f(x)=|x+1|,g(x)=$\left\{\begin{array}{l}{x+1,x≥-1}\\{-x-1,x-1}\end{array}\right.$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com