精英家教网 > 高中数学 > 题目详情
10.(1)运用完全归纳推理证明f(x)=x6-x3+x2-x+1的值恒为正数.
(2)已知a,b,c∈R+,a+b+c=1,求证:$\frac{1}{a}$+$\frac{1}{b}$+$\frac{1}{c}$≥9.

分析 (1)可对x的所有不同取值逐一给出证明,即完全归纳推理;
(2)巧用“1”,将$\frac{1}{a}$+$\frac{1}{b}$+$\frac{1}{c}$转化为可以用基本不等式的形式证明.

解答 (1)证明:当x<0时,f(x)各项都是正数,
∴当x<0时,f(x)为正数,
当0≤x≤1时,f(x)=x6+x2(1-x)+(1-x)>0;
当x>1时,f(x)=x3(x3-1)+x(x-1)+1>0.
综上所述,f(x)的值恒为正数;
(2)因为a,b,c∈R+,a+b+c=1,所以$\frac{1}{a}$+$\frac{1}{b}$+$\frac{1}{c}$=$\frac{a+b+c}{a}+\frac{a+b+c}{b}+\frac{a+b+c}{c}$=3+($\frac{b}{a}+\frac{a}{b}$)+($\frac{c}{a}+\frac{a}{c}$)+($\frac{c}{b}+\frac{b}{c}$)≥3+2+2+2≥9.

点评 本题主要考查了函数值的判断,采用分类讨论的思想,以及完全归纳推理、基本不等式的运用证明不等式的问题,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=log2(2x+1)
(1)证明:函数f(x)在(-∞,+∞)内是增加的;
(2)若关于x的方程log2(2x-1)=m+f(x)在[1,2]上有解,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.过椭圆$\frac{x^2}{16}+\frac{y^2}{4}$=1内一点M(2,-1)引弦AB,若AB恰好被点M平分,求AB所在的直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.(理)已知函数y=f(x)的定义域为R,当x<0时,f(x)>1,且对任意的实数x,y∈R,等式f(x)•f(y)=f(x+y)恒成立.若数列{an}满足a1=f(0),且f(an+1)=$\frac{1}{f(-2-{a}_{n})}$(n∈N*),则a2011的值为(  )
A.4018B.4019C.4020D.4021

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知a+b=$\sqrt{2}sin(θ+\frac{π}{4}),a-b=\sqrt{2}sin(θ-\frac{π}{4}),求证:{a^2}+{b^2}$=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.设函数f(x)=|2x-1|+|2x-3|,x∈R.
(1)解不等式f(x)≤5;
(2)若h(x)=ln[f(x)+a]的定义域为R,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知复数Z=$\frac{1-\sqrt{3}i}{(\sqrt{3}+i)^{2}}$,$\overline{Z}$是Z的共轭复数,则Z•$\overline{Z}$=(  )
A.$\frac{1}{2}$B.$\frac{1}{4}$C.2D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知a为实数,则代数式$\sqrt{27-12a+2{a}^{2}}$的最小值为(  )
A.0B.3C.3$\sqrt{3}$D.9

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知等差数列{an}的前n项和为Sn,满足S5=50,a2+a5=24,{bn}为递增的等比数列,且b1,b3是方程x2-10x+16=0的两个根.
(I)求数列{an},{bn}的通项公式;
(Ⅱ)若数列{bn}满足cn=$\frac{{a}_{n}}{{b}_{n}}$,求数列{cn}的前n项和Tn

查看答案和解析>>

同步练习册答案