精英家教网 > 高中数学 > 题目详情
函数f(x)=lnx-
1
2
x2在[
1
2
,2]上的极大值是
 
分析:求导,令f′(x)=0得x=1,令f′(x)>0,令f′(x)<0得f(x)的单调性,确定函数f(x)在[
1
2
,2]上的极大值.
解答:解:f′(x)=
1
x
-x,x∈[
1
2
,2],
令f′(x)=0得x=1
令f′(x)>0得
1
2
≤x<1,令f′(x)<0得1<x≤2
∴f(x)在[
1
2
,1]上是增函数,在[1,2]上是减函数,
∴f(x)在[
1
2
,2]上的极大值是f(1)=ln1-
1
2
=-
1
2

故答案为-
1
2
点评:本题主要考查导数与极值的关系,若f(a)=0:a的左侧f'(x)>0,a的右侧f'(x)<0则a是极大值点;a的左侧f'(x)<0,a的右侧f'(x)>0则a是极小值点.属于基础知识,基本运算的考查.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=lnx-
ax

(Ⅰ)当a>0时,判断f(x)在定义域上的单调性;
(Ⅱ)求f(x)在[1,e]上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

7、函数f(x)=lnx-2x+3零点的个数为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在(0,+∞)上的三个函数f(x)=lnx,g(x)=x2-af(x),h(x)=x-a
x
且g(x)在x=1处取得极值.求a的值及函数h(x)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
lnx+kex
(k为常数,e=2.71828…是自然对数的底数),曲线y=f(x) 在点(1,f(1))处的切线与x轴平行.
(Ⅰ)求k的值;
(Ⅱ)求f(x)的单调区间;
(Ⅲ)设g(x)=(x2+x)f′(x),其中f′(x)是f(x)的导函数.证明:对任意x>0,g(x)<1+e-2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=lnx-x
(1)求f(x)的单调区间;
(2)若不等式af(x)≥x-
1
2
x2在x∈(0,+∞)内恒成立,求实数a的取值范围;
(3)n∈N+,求证:
1
ln2
+
1
ln3
+…+
1
ln(n+1)
n
n+1

查看答案和解析>>

同步练习册答案