精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
lnx+kex
(k为常数,e=2.71828…是自然对数的底数),曲线y=f(x) 在点(1,f(1))处的切线与x轴平行.
(Ⅰ)求k的值;
(Ⅱ)求f(x)的单调区间;
(Ⅲ)设g(x)=(x2+x)f′(x),其中f′(x)是f(x)的导函数.证明:对任意x>0,g(x)<1+e-2
分析:(Ⅰ)求出函数的导函数,函数在点(1,f(1))处的切线与x轴平行,说明f′(1)=0,则k值可求;
(Ⅱ)求出函数的定义域,然后让导函数等于0求出极值点,借助于导函数在各区间内的符号求函数f(x)的单调区间.
(Ⅲ)g(x)=(x2+x)f′(x)=
1+x
ex
(1-xlnx-x),分别研究r(x)=1-xlnx-x,s(x)=
1+x
ex
的单调性,可得函数的范围,即可证明结论.
解答:(Ⅰ)解:f′(x)=
1
x
-lnx-k
ex

依题意,∵曲线y=f(x) 在点(1,f(1))处的切线与x轴平行,
f′(1)=
1-k
e
=0,
∴k=1为所求.
(Ⅱ)解:k=1时,f′(x)=
1
x
-lnx-1
ex
(x>0)
记h(x)=
1
x
-lnx-1,函数只有一个零点1,且当x>1时,h(x)<0,当0<x<1时,h(x)>0,
∴当x>1时,f′(x)<0,∴原函数在(1,+∞)上为减函数;当0<x<1时,f′(x)>0,
∴原函数在(0,1)上为增函数.
∴函数f(x)的增区间为(0,1),减区间为(1,+∞).
(Ⅲ)证明:g(x)=(x2+x)f′(x)=
1+x
ex
(1-xlnx-x),先研究1-xlnx-x,再研究
1+x
ex

①记r(x)=1-xlnx-x,x>0,∴r′(x)=-lnx-2,令r′(x)=0,得x=e-2
当x∈(0,e-2)时,r′(x)>0,r(x)单增;
当x∈(e-2,+∞)时,r′(x)<0,r(x)单减.
∴r(x)max=r(e-2)=1+e-2,即1-xlnx-x≤1+e-2
②记s(x)=
1+x
ex
,x>0,
s′(x)=-
x
ex
<0,∴s(x)在(0,+∞)单减,
∴s(x)<s(0)=1,即
1+x
ex
<1.
综①、②知,g(x))=
1+x
ex
(1-xlnx-x)≤(
1+x
ex
)(1+e-2)<1+e-2
点评:本题考查导数知识的运用,考查导数的几何意义,考查函数的单调性,考查分类讨论的数学思想,正确求导,合理分类是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=2x-2+ae-x(a∈R)
(1)若曲线y=f(x)在点(1,f(1))处的切线平行于x轴,求a的值;
(2)当a=1时,若直线l:y=kx-2与曲线y=f(x)在(-∞,0)上有公共点,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2+2|lnx-1|.
(1)求函数y=f(x)的最小值;
(2)证明:对任意x∈[1,+∞),lnx≥
2(x-1)
x+1
恒成立;
(3)对于函数f(x)图象上的不同两点A(x1,y1),B(x2,y2)(x1<x2),如果在函数f(x)图象上存在点M(x0,y0)(其中x0∈(x1,x2))使得点M处的切线l∥AB,则称直线AB存在“伴侣切线”.特别地,当x0=
x1+x2
2
时,又称直线AB存在“中值伴侣切线”.试问:当x≥e时,对于函数f(x)图象上不同两点A、B,直线AB是否存在“中值伴侣切线”?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-bx的图象在点A(1,f(1))处的切线l与直线x+3y-1=0垂直,若数列{
1
f(n)
}的前n项和为Sn,则S2012的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=xlnx
(Ⅰ)求函数f(x)的极值点;
(Ⅱ)若直线l过点(0,-1),并且与曲线y=f(x)相切,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
3
x
a
+
3
(a-1)
x
,a≠0且a≠1.
(1)试就实数a的不同取值,写出该函数的单调增区间;
(2)已知当x>0时,函数在(0,
6
)上单调递减,在(
6
,+∞)上单调递增,求a的值并写出函数的解析式;
(3)记(2)中的函数图象为曲线C,试问是否存在经过原点的直线l,使得l为曲线C的对称轴?若存在,求出直线l的方程;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案