已知ABCD是平行四边形,P点是ABCD所在平面外的一点,连接PA、PB、PC、PD.设点E、F、G、H分别为△PAB、△PBC、△PCD、△PDA的重心.
(1)试用向量方法证明E、F、G、H四点共面;
(2)试判断平面EFGH与平面ABCD的位置关系,并用向量方法证明你的判断.
(1)证明略(2) 平面EFGH∥平面ABCD
(1) 分别延长PE、PF、PG、PH交对边于M、N、Q、R点,因为E、F、G、H分别是所在三角形的重心,所以M、N、Q、R为所在边的中点,顺次连接M、N、Q、R得到的四边形为平行四边形,且有
=![]()
,
=![]()
,
=![]()
,
=![]()
![]()
∴
=
+![]()
=(
-
)+(
-
)
=
(
-
)+
(
-
)
=
(
+
)
又∵
=
-
=![]()
-![]()
=![]()
![]()
∴![]()
=
(
+
),∴
=
+![]()
由共面向量定理知:E、F、G、H四点共面.
(2) 由(1)得
=![]()
,故
∥
.
又∵![]()
平面ABC,EG
平面ABC.
∴EG∥平面ABC.
又∵
=
-
=![]()
-![]()
=![]()
![]()
∴MN∥EF,又∵MN
平面ABC,EF
平面ABC,
EF∥平面ABC.
∵EG与EF交于E点,
∴平面EFGH∥平面ABCD.
科目:高中数学 来源: 题型:
查看答案和解析>>
科目:高中数学 来源: 题型:
查看答案和解析>>
科目:高中数学 来源: 题型:
| 3 |
查看答案和解析>>
科目:高中数学 来源: 题型:
| 1 |
| 3 |
| VP |
| PC |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com