精英家教网 > 高中数学 > 题目详情
9.如右图所示,PA为圆O的切线,切点为A,AC是直径,M为PA的中点,MC与圆交于点B.
求证:(I)PM2=MB•MC
(Ⅱ)∠MBP+∠ACP=$\frac{π}{2}$.

分析 (Ⅰ)根据切割线定理,得到AM是MB和MC的比例中项,结合AM=MP即可证明PM2=MB•MC;
(Ⅱ)由MP2=MB•MC得$\frac{PM}{MC}$=$\frac{MB}{PM}$,再结合公共角∠BMP=∠PMC,得三角形BMP与三角形PMC相似,从而得到对应角相等,命题得证.

解答 证明:(Ⅰ)∵AM切圆于点A
∴AM2=MB•MC
又∵M为PA中点,AM=MP
∴MP2=MB•MC;
(Ⅱ)∵MP2=MB•MC,
∴$\frac{PM}{MC}$=$\frac{MB}{PM}$,
又∵∠BMP=∠PMC
∴△BMP∽△PMC(边角边)
∴∠MBP=∠MPC.
∵PA为圆O的切线,切点为A,AC是直径,
∴∠MBP+∠ACP=∠MPC+∠ACP=$\frac{π}{2}$.

点评 本题考查了圆当中的比例线段,以及三角形相似的有关知识点,属于中档题.找到题中的相似三角形来证明角的相等,是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.给出下列命题:
①将空间中所有的单位向量移到同一个起点,则它们的终点构成一个圆;
②若空间向量$\overrightarrow{a}$,$\overrightarrow{b}$满足|$\overrightarrow{a}$|=|$\overrightarrow{b}$|,则$\overrightarrow{a}$=$\overrightarrow{b}$;
③若空间向量$\overrightarrow{m}$,$\overrightarrow{n}$,$\overrightarrow{p}$满足$\overrightarrow{m}$=$\overrightarrow{n}$,$\overrightarrow{n}$=$\overrightarrow{p}$,则$\overrightarrow{m}$=$\overrightarrow{p}$;
④空间中任意两个单位向量必相等;
⑤零向量没有方向;
其中假命题的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的左、右焦点为F1、F2,椭圆C上的点$P(\frac{{2\sqrt{6}}}{3},\frac{{\sqrt{3}}}{3})$满足$\overrightarrow{P{F_1}}•\overrightarrow{P{F_2}}=0$.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)自定点Q(0,-2)作一条直线l与椭圆C交于不同的两点A、B(点B在点A的下方),记$λ=\frac{{|\overrightarrow{QB}|}}{{|\overrightarrow{QA}|}}$,求λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知直线l与圆C:x2+y2+2x-4y+a=0相交于A,B两点,弦AB的中点为M(0,1).
(1)求实数a的取值范围及直线l的方程;
(2)已知N(0,-3),若圆C上存在两个不同的点P,使PM=$\sqrt{3}$PN,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.$sinA=\frac{1}{2}$”是“A=30°”的必要不充分条件.(填“充分不必要”、“必要不充分”、“充要”、“既不充分又不必要”)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.双曲线的方程是$\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{9}$=1,点P在双曲线上,且|PF1|•|PF2|=36.则△F1PF2的面积是9$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若平面向量$\overrightarrow{a}$、$\overrightarrow{b}$满足|$\overrightarrow{a}$|=$\sqrt{2}$,|$\overrightarrow{b}$|=2,($\overrightarrow{a}$-$\overrightarrow{b}$)⊥$\overrightarrow{a}$,则$\overrightarrow{a}$与$\overrightarrow{b}$的夹角是(  )
A.$\frac{5}{12}$πB.$\frac{π}{3}$C.$\frac{π}{6}$D.$\frac{π}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.函数f(x)=$\left\{\begin{array}{l}1-x,x≤0\\{log_2}x,x>0\end{array}$,且f(a)=2,则a=-1或4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.设集合P={-3,0,2,4],集合Q={x|-1<x<3},则P∩Q={0,2}.

查看答案和解析>>

同步练习册答案