已知向量a=(Asin ωx,Acos ωx),b=(cos θ,sin θ),f(x)=a·b+1,其中A>0,ω>0,θ为锐角.f(x)的图象的两个相邻对称中心的距离为,且当x=时,f(x)取得最大值3.
(1)求f(x)的解析式;
(2)将f(x)的图象先向下平移1个单位,再向左平移φ(φ>0)个单位得g(x)的图象,若g(x)为奇函数,求φ的最小值.
科目:高中数学 来源:2014年高考数学(理)二轮复习专题提升训练训练11练习卷(解析版) 题型:解答题
已知四棱锥P?ABCD的底面ABCD是边长为2的正方形,PD⊥底面ABCD,E,F分别为棱BC,AD的中点.
(1)求证:DE∥平面PFB;
(2)已知二面角P?BF?C的余弦值为,求四棱锥P?ABCD的体积.
查看答案和解析>>
科目:高中数学 来源:2014年高考数学(理)二轮复习专题提升训练优化重组卷4练习卷(解析版) 题型:解答题
如图,四棱柱ABCD-A1B1C1D1的底面ABCD是正方形,O为底面中心,A1O⊥平面ABCD,AB=AA1=.
(1)证明:A1C⊥平面BB1D1D;
(2)求平面OCB1与平面BB1D1D的夹角θ的大小.
查看答案和解析>>
科目:高中数学 来源:2014年高考数学(理)二轮复习专题提升训练优化重组卷3练习卷(解析版) 题型:填空题
已知数列{an}是公差不为0的等差数列,{bn}是等比数列,其中a1=3,b1=1,a2=b2,3a5=b3,若存在常数u,v对任意正整数n都有an=3logubn+v,则u+v=________.
查看答案和解析>>
科目:高中数学 来源:2014年高考数学(理)二轮复习专题提升训练优化重组卷3练习卷(解析版) 题型:选择题
若-9,a,-1成等差数列,-9,m,b,n,-1成等比数列,则ab=( ).
A.15 B.-15 C.±15 D.10
查看答案和解析>>
科目:高中数学 来源:2014年高考数学(理)二轮复习专题提升训练优化重组卷2练习卷(解析版) 题型:选择题
已知向量a,b满足|a|=2,|b|=1,且(a+b)⊥,则a与b的夹角为( ).
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源:2014年高考数学(理)二轮复习专题提升训练x4-1练习卷(解析版) 题型:解答题
如图,已知在△ABC中,AB=AC,D是△ABC外接圆劣弧上的点(不与点A,C重合),延长BD至E.
(1)求证:AD的延长线平分∠CDE;
(2)若∠BAC=30°,△ABC中BC边上的高为2+,求△ABC外接圆的面积.
查看答案和解析>>
科目:高中数学 来源:2014年高考数学(理)二轮复习专题提升训练4练习卷(解析版) 题型:解答题
(2013·重庆卷)设f(x)=a(x-5)2+6ln x,其中a∈R,曲线y=f(x)在点(1,f(1))处的切线与y轴相交于点(0,6).
(1)确定a的值;
(2)求函数f(x)的单调区间与极值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com