精英家教网 > 高中数学 > 题目详情
已知随机变量X的分布列为
X
1
2
3
P
0.2
0.4
0.4
 
则E(6X+8)=(  )
A.13.2      B.21.2         C.20.2      D.22.2
B
由题意知,E(X)=1×0.2+2×0.4+3×0.4=2.2,∴E(6X+8)=6E(X)+8=6×2.2+8=21.2.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

一袋中装有5个白球,3个红球,现从袋中往外取球,每次任取一个,取出后记下颜色,若为红色停止,若为白色则继续抽取,停止时从袋中抽取的白球的个数为随机变量,则(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

一个暗箱中有形状和大小完全相同的3只白球与2只黑球,每次从中取出一只球,取到白球得2分,取到黑球得3分.甲从暗箱中有放回地依次取出3只球.
(1)写出甲总得分ξ的分布列;
(2)求甲总得分ξ的期望E(ξ).

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

一个篮球运动员投篮一次得3分的概率为,得2分的概率为,不得分的概率为),已知他投篮一次得分的数学期望为2(不计其它得分情况),则的最大值为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设X为随机变量,X~B ,若随机变量X的数学期望E(X)=2,则P(X=2)等于(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设随机变量的概率分布为
ε
0
1
2
P


1-
 
则ξ的数学期望的最小值是________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

[2014·济南模拟]现有10张奖券,8张2元的,2张5元的,某人从中随机地、无放回地抽取3张,则此人得奖金额的数学期望是(  )
A.6B.7.8C.9D.12

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

甲、乙两支排球队进行比赛,约定先胜局者获得比赛的胜利,比赛随即结束。除第五局甲队获胜的概率是外,其余每局比赛甲队获胜的概率都是。假设各局比赛结果相互独立。
(1)分别求甲队以胜利的概率;
(2)若比赛结果为求,则胜利方得分,对方得分;若比赛结果为,则胜利方得分、对方得分。求乙队得分的分布列及数学期望。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

A、B两个投资项目的利润率分别为随机变量X1和X2,根据市场分析,X1和X2的分布列分别为
X1
5%
10%
P
0.8
0.2
 
X2
2%
8%
12%
P
0.2
0.5
0.3
(1)在A,B两个项目上各投资100万元,Y1和Y2分别表示投资项目A和B所获得的利润,求方差V(Y1)、V(Y2);
(2)将x(0≤x≤100)万元投资A项目,100-x万元投资B项目,f(x)表示投资A项目所得利润的方差与投资B项目所得利润的方差的和.求f(x)的最小值,并指出x为何值时,f(x)取到最小值.

查看答案和解析>>

同步练习册答案