精英家教网 > 高中数学 > 题目详情

【题目】在△ABC中,a,b,c分别为角A,B,C的对边,若
(1)求角A的大小;
(2)已知 ,求△ABC面积的最大值.

【答案】
(1)解:因为 ,所以(2c﹣b)cosA=acosB由正弦定理,

得(2sinC﹣sinB)cosA=sinAsinB,整理得2sinCcosA﹣sinBcosA=sinAcosB

所以2sinC﹣cosA=sin(A+B)=sinC

在△ABC中,sinC≠0,所以


(2)解:由余弦定理cosA= = ,a=2

∴b2+c2﹣20=bc≥2bc﹣20

∴bc≤20,当且仅当b=c时取“=”.

∴三角形的面积S= bcsinA≤5

∴三角形面积的最大值为5


【解析】(1)把条件中所给的既有角又有边的等式利用正弦定理变化成只有角的形式,整理逆用两角和的正弦公式,根据三角形内角的关系,得到结果.(2)利用余弦定理写成关于角A的表示式,整理出两个边的积的范围,表示出三角形的面积,得到面积的最大值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设命题p:实数x满足(x﹣a)(x﹣3a)<0,其中a>0,命题q:实数x满足
(1)若a=1,且p∧q为真,求实数x的取值范围;
(2)若¬p是¬q的充分不必要条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】本公司计划2018年在甲、乙两个电视台做总时间不超过300分钟的广告,广告总费用不超过9万元,甲、乙电视台的广告收费标准分别为/分钟和200/分钟,规定甲、乙两个电视台为该公司所做的每分钟广告,能给公司事来的收益分别为0.3万元和0.2万元.问该公司如何分配在甲、乙两个电视台的广告时间,才能使公司的收益最大,最大收益是多少万元?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为贯彻落实教育部6部门《关于加快发展青少年校园足球的实施意见》,全面提高我市中学生的体质健康水平,培养拼搏意识和团队精神,普及足球知识和技能,市教体局决定举行春季校园足球联赛.为迎接此次联赛,甲中学选拔了20名学生组成集训队,现统计了这20名学生的身高,记录入如表:(设ξ为随机变量)

身高(cm)

168

174

175

176

178

182

185

188

人数

1

2

4

3

5

1

3

1


(1)请计算这20名学生的身高的中位数、众数,并补充完成下面的茎叶图;
(2)身高为185cm和188cm的四名学生分别记为A,B,C,D,现从这四名学生选2名担任正副门将,请利用列举法列出所有可能情况,并求学生A入选门将的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知F为抛物线y2=x的焦点,点A,B在该抛物线上且位于x轴的两侧, =2(其中O为坐标原点),则△ABO与△AFO面积之和的最小值是(
A.2
B.3
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知中心在坐标原点的椭圆C经过点A(2,3),且点F (2,0)为其右焦点.
(1)求椭圆C的方程和离心率e;
(2)若平行于OA的直线l与椭圆有公共点,求直线l在y轴上的截距的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量 =(cosx+sinx,1), =(cosx+sinx,﹣1)函数g(x)=4
(1)求函数g(x)在[ ]上的值域;
(2)若x∈[0,2016π],求满足g(x)=0的实数x的个数;
(3)求证:对任意λ>0,都存在μ>0,使g(x)+x﹣4<0对x∈(﹣∞,λμ)恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 +y2=1(m>1)和双曲线 ﹣y2=1(n>0)有相同的焦点F1 , F2 , P是它们的一个交点,则△F1PF2的形状是(
A.锐角三角形
B.直角三角形
C.钝角三角形
D.随m,n的变化而变化

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2015年春,某地干旱少雨,农作物受灾严重,为了使今后保证农田灌溉,当地政府决定建一横断面为等腰梯形的水渠(水渠的横断面如图所示),为减少水的流失量,必须减少水与渠壁的接触面,若水渠横断面的面积设计为定值S,渠深为h,则水渠壁的倾斜角α(0<α< )为多大时,水渠中水的流失量最小?

查看答案和解析>>

同步练习册答案