精英家教网 > 高中数学 > 题目详情

已知函数f(x),当xy∈R时,恒有f(xy)=f(x)+f(y).

(1)求证:f(x)是奇函数;

(2)如果x>0时,f(x)<0,并且f(1)=-,试求f(x)在区间[-2,6]上的最值.

解:(1)证明∵函数定义域为R,其定义域关于原点对称.

f(xy)=f(x)+f(y),令y=-x

f(0)=f(x)+f(-x).

xy=0,∴f(0)=f(0)+f(0),得f(0)=0.

f(x)+f(-x)=0,得f(-x)=-f(x),

f(x)为奇函数.

(2)设x1<x2,且x1x2∈R.

f(x2x1)=f(x2+(-x1))=f(x2)+f(-x1)=f(x2)-f(x1).

x2x1>0,∴f(x2x1)<0.∴f(x2)-f(x1)<0.即f(x)在R上单调递减.

f(-2)为最大值,f(6)为最小值.

f(1)=-

f(-2)=-f(2)=-2f(1)=1,

f(6)=2f(3)=2[f(1)+f(2)]=-3.

f(x)在区间[-2,6]上的最大值为1,最小值为-3.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
1 ( 当x为有理数时)
0(当x为无理数时)
,给出下列关于f(x)的性质:
①f(x)是周期函数,3是它的一个周期;②f(x)是偶函数;③方程f(x)=cosx有有理根;④方程f[f(x)]=f(x)与方程f(x)=1的解集相同
正确的个数为(  )
A、1个B、2个C、3个D、4个

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=,求当x为何值时,函数有最大值?

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数f(x)=
1 ( 当x为有理数时)
0(当x为无理数时)
,给出下列关于f(x)的性质:
①f(x)是周期函数,3是它的一个周期;②f(x)是偶函数;③方程f(x)=cosx有有理根;④方程f[f(x)]=f(x)与方程f(x)=1的解集相同
正确的个数为(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=.

(1)当a>0时,解关于x的不等式f(x)<0;

(2)若不等式f(x)≥f(1)对x∈R恒成立,求f(x)的单调递减区间.

查看答案和解析>>

同步练习册答案