| A. | 在区间( $\frac{1}{e}$,1),(1,e)内均有零点 | |
| B. | 在区间( $\frac{1}{e}$,1),(1,e)内均无零点 | |
| C. | 在区间( $\frac{1}{e}$,1)内有零点,在区间(1,e)内无零点 | |
| D. | 在区间( $\frac{1}{e}$,1),内无零点,在区间(1,e)内有零点 |
分析 先对函数f(x)进行求导,再根据导函数的正负情况判断原函数的增减性可得答案.
解答 解:由题得f′(x)=$\frac{x-3}{3x}$,令f′(x)>0得x>3;
令f′(x)<0得0<x<3;f′(x)=0得x=3,
故知函数f(x)在区间(0,3)上为减函数,在区间(3,+∞)为增函数,
在点x=3处有极小值1-ln3<0;
又f(1)=$\frac{1}{3}$>0,f(e)=$\frac{e}{3}$-1<0,f($\frac{1}{e}$)=$\frac{1}{3e}$+1>0,
故选:D.
点评 本题主要考查导函数的增减性与原函数的单调性之间的关系.即当导函数大于0时原函数单调递增,当导函数小于0时原函数单调递减.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | $\frac{2}{3}$ | C. | $\frac{3}{4}$ | D. | 1 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,1) | B. | (-∞,1] | C. | [1,+∞) | D. | (1,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,0]∪[3,+∞) | B. | (-∞,1)∪[3,+∞) | C. | (-∞,1) | D. | (-∞,0] |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com